
Mixed states and pure states

(Dated: April 9, 2009)

These are brief notes on the abstract formalism of quantum mechanics. They will intro-

duce the concepts of pure and mixed quantum states. Some statements are indicated by a

P. You should try and prove these statements. If you understand the formalism, then these

statements should not be hard to prove; they are good tests for your understanding. The

homework will contain more difficult questions.

1. A pure state of a quantum system is denoted by a vector (ket) |ψ〉 with unit length,

i.e. 〈ψ|ψ〉 = 1, in a complex Hilbert space H. Previously, we (and the textbook) just

called this a ‘state’, but now we call it a ‘pure’ state to distinguish it from a more

general type of quantum states (‘mixed’ states, see step 21).

2. We already know from the textbook that we can define dual vectors (bra) 〈φ| as linear

maps from the Hilbert space H to the field C of complex numbers. Formally, we write

〈φ|(|ψ〉) = 〈φ|ψ〉.

The object on the right-hand side denotes the inner product in H for two vectors |φ〉

and |ψ〉. That notation for the inner product used to be just that, notation. Now that

we have defined 〈φ| as a dual vector it has acquired a second meaning.

3. Given vectors and dual vectors we can define operators (i.e., maps from H to H) of

the form

Ô = |ψ〉〈φ|.

Ô acts on vectors in H and produces as result vectors in H (P).

4. The hermitian conjugate of this operator is

Ô† ≡ |φ〉〈ψ|.

This follows (P) straight from the definition of the hermitian conjugate:

(〈m|Ô|n〉)∗ = 〈n|Ô†|m〉,

for all states |n〉 and |m〉 in H.



5. A special case of such an operator is

P̂ψ = |ψ〉〈ψ|.

It is hermitian and it satisfies (P)

P̂ 2
ψ = P̂ψ.

That is, it is a projection operator, or projector.

6. Completeness of a basis {|n〉} of H can be expressed as

Î =
∑
n

|n〉〈n|,

where Î is the identity operator on H. ‘Inserting the identity’ is a useful trick. We’ll

use it several times in the following, and it may be useful for proving some of the P

statements. [If n is a continuous variable, we should integrate over n rather than sum.

In the following we’ll keep using sums to keep notation simple, except when we’re

discussing position or momentum.]

7. It is useful to define the ‘Trace’ operation:

Tr(K̂) =
∑
n

〈n|K̂|n〉,

where K̂ is an arbitrary operator, and the sum is over a set of basis vectors {|n〉}. If

we write down a matrix representation for Ô, i.e., a matrix with elements 〈n|Ô|m〉,

then the Trace is the sum over all diagonal elements (i.e., with m = n).

8. A nice property of the Trace operation is that a basis change leaves it invariant (P):

that is, it does not matter which basis we choose in the definition (step 7) of Trace.

Indeed, the Trace would be far less useful if it did depend on the basis chosen.

9. Another property of the Trace is the ‘cyclical’ property. For example, for the Trace of

three arbitrary operators (which do not necessarily commute!) we have (P)

Tr(ÂB̂Ĉ) = Tr(B̂ĈÂ) = Tr(ĈÂB̂).

Generalizations to any number of operators are obvious. In an infinite-dimensional

Hilbert space some care has to be taken . . . see homework!



10. On the other hand, in general we have

Tr(ÂB̂Ĉ) 6= Tr(ĈB̂Â).

11. Expectation values can be expressed in terms of projectors P̂ψ rather than in terms of

state vectors |ψ〉. Namely, by inserting the identity Î =
∑
n |n〉〈n| we find that for any

operator Ô we can write (P)

〈Ô〉ψ = 〈ψ|Ô|ψ〉 = Tr(ÔP̂ψ) = Tr(P̂ψÔ).

12. Similarly, we can express probabilities and overlaps in terms of projectors (P):

|〈φ|ψ〉|2 = Tr(P̂ψ|φ〉〈φ|) = Tr(|φ〉〈φ|P̂ψ).

13. And so we might as well use the projector P̂ψ to describe all physical quantities we

can derive from the state |ψ〉. We use the symbol ρ̂ to indicate (or emphasize) we’re

talking about a physical state rather than an arbitrary operator

ρ̂ = |ψ〉〈ψ|,

and we call ρ̂ the density matrix, or the density operator describing the state |ψ〉.

14. We always have the normalization condition (P)

Tr(ρ̂) = 1.

15. For example, if we take the two pure states

|ψ±〉 =
|0〉 ± |1〉√

2
,

then the corresponding ρ̂s are 2x2 matrices. Written in the basis {|0〉, |1〉}, they have

the form

ρ̂± =

 1/2 ±1/2

±1/2 1/2

 .

16. The notation in step 15 is borrowed from quantum information theory: there, instead

of considering classical bits, which take values 0 and 1, we consider qubits, which can

be in any superposition of |0〉 and |1〉. You could think of these states as spin up and

spin down, | ↑〉 and | ↓〉, of a spin-1/2 particle, as an example.



17. For another example, consider a particle moving in 1-D. Its state |ψ〉 lives in an infinite-

dimensional Hilbert space. Suppose we, as usual, define the wavefunction ψ(x) by

〈x|ψ〉 = ψ(x).

Then the corresponding density matrix in the basis {|x〉}, x ∈ (−∞,+∞), is

ρ̂ = |ψ〉〈ψ| =
∫ ∞

−∞
dx

∫ ∞

−∞
dx′|x′〉〈x′| |ψ〉〈ψ| |x〉〈x|

where we inserted two identities. Rearranging terms gives

ρ̂ =
∫ ∞

−∞
dx

∫ ∞

−∞
dx′ψ∗(x)ψ(x′) |x′〉〈x|

We can denote the matrix elements of ρ̂ as

〈x′|ρ̂|x〉 ≡ ρ(x′, x) ≡ ρx′x = ψ(x′)ψ∗(x).

18. On the ‘diagonal’ of the matrix ρ(x′, x), where x = x′, we get the usual probability

density |ψ(x)|2. We also have

Tr(ρ̂) =
∫
dx|ψ(x)|2 = 1,

which expresses normalization in old and new ways.

19. Similarly, we can use momentum eigenstates and expand the same matrix in the form

(P)

ρ̂ =
∫ ∞

−∞
dp

∫ ∞

−∞
dp′ψ̃∗(p)ψ̃(p′) |p′〉〈p|

where ψ̃(p) = 〈p|ψ〉.

20. Here is one advantage a density operator has compared to a ket: a given physical state

can be described by any ket of the form exp(iθ)|ψ〉 with θ an arbitrary phase, but by

only one density matrix ρ̂. This is more economical, to say the least.

21. Now let us define a more general type of states, still described by density operators

and keeping the advantage of step 20, by introducing ‘mixtures’ of pure states:

ρ̂ =
N∑
k=1

pk|ψk〉〈ψk|,



where {|ψk〉} is some set of pure states, not necessarily orthogonal. The number N

could be anything, and is not limited by the dimension of the Hilbert space. The N

numbers (or ‘weights’) pk are nonzero and satisfy the relations

0 < pk ≤ 1;
N∑
k=1

pk = 1.

The normalization of the weights pk expresses the condition Tr(ρ̂) = 1 (P).

22. We could interpret the weights pk as probabilities, but we have to be careful: we should

not think of pk as the probability to find the particle in the state |ψk〉! You can give

one reason for that right now (P), and soon we will see another reason.

23. The quantum state described by ρ̂ is called a mixed state whenever ρ̂ cannot be written

as a density matrix for a pure state (for which N = 1 and p1 = 1).

24. An example: from statistical physics you may know the following statistical mixture

of energy eigenstates |ψn〉 in thermal equilibrium:

ρ̂ =
∑
n

pn|ψn〉〈ψn|,

where pn = exp(−En/kT )/Z with Z =
∑
n exp(−En/kT ) the partition function. When

the Hamiltonian does not depend on time, this mixture is time-independent (P).

25. Expectation values in mixed states are probabilistic weighted averages of the expecta-

tion values of the pure states:

Tr(ρ̂Ô) =
∑
k

pkTr(|ψk〉〈ψk|Ô).

That is, in the pure state |ψk〉 we would expect an average value of Ok ≡ Tr(|ψk〉〈ψk|Ô)

if we measured Ô, and for the mixed state we simply get
∑
k pkOk.

26. Since ρ̂ is hermitian, we can diagonalize it, such that

ρ̂ =
M∑
k=1

λk|φk〉〈φk|,

where the states |φk〉 are orthogonal (unlike those used in step 21). The numbers λk

satisfy

0 ≤ λk ≤ 1;
M∑
k=1

λk = 1.



The numbers λk are, in fact, nothing but the eigenvalues of ρ̂. They sum to one because

of normalization. There are exactly M = d of these numbers, where d is the dimension

of the Hilbert space. In contrast, in step 21, N could be any number.

27. Comparing steps 21 and 26 shows that a given mixed (not pure) density matrix can

be written in multiple [infinitely many ways, in fact] ways as probabilistic mixtures

of pure states. And that is another reason why we have to be careful interpreting

coefficients λk or pk as probabilities.

28. On the other hand, we can certainly prepare a mixed state in a probabilistic way. If

we prepare with probability pk a pure state |ψk〉, and then forget which pure state we

prepared, the resulting mixed state is ρ̂ =
∑
k pk|ψk〉〈ψk|. In this case, pk certainly has

the meaning of probability.

29. For example, consider the following mixture: with probability 1/2 we prepare |0〉 and

with probability 1/2 we prepare (|0〉+ |1〉)/
√

2. The mixture can be represented as a

2x2 matrix in the basis {|0〉, |1〉}:

ρ̂ =
1

2

 1 0

0 0

 +
1

2

 1/2 1/2

1/2 1/2

 =

 3/4 1/4

1/4 1/4

 .

The eigenvalues and eigenvectors of this matrix are

λ± = 1/2±
√

2/4,

and

|φ±〉 =
√
λ±|0〉 ∓

√
1− λ±|1〉.

And so we can also view the mixed state as a mixture of the two eigenstates |φ±〉 with

weights equal to λ±.

30. There are two simple tests to determine whether ρ̂ describes a pure state or not:

pure state : ρ̂2 = ρ̂; mixed state : ρ̂2 6= ρ̂.

Or (P):

pure state : Tr(ρ̂2) = 1; mixed state : Tr(ρ̂2) < 1.

In fact, P ≡ Tr(ρ̂2) is called the purity of a state. A state is pure when its purity

equals 1, and mixed otherwise.



31. Another important quantity is the entropy

S(ρ) = −Tr(ρ̂ log[ρ̂]).

You might wonder how to calculate the log of a matrix: just diagonalize it, and take

the log of the diagonal elements. That is,

S(ρ̂) = −
d∑

k=1

λk log λk,

where λk are the eigenvalues of ρ̂. Note that these eigenvalues are nonnegative, so

the entropy can always be defined. Indeed, a zero eigenvalue contributes zero to the

entropy, as

lim
x↓0

x log x = 0.

32. We use the log base 2, so that the unit of entropy is the bit. We can then interpret the

entropy as the missing information (in bits) about the state.

33. Using the entropy we get another criterion for pure states vs mixed states (P):

pure state :S(ρ̂) = 0

mixed state :S(ρ̂) > 0.

Thus, there is no missing information for a pure state. A pure quantum state cor-

responds to maximum information. It doesn’t tell us all we could know classically

(for example, momentum and position), but it is the maximum knowledge quantum

mechanics allows us to have.

34. Example: both 2x2 matrices displayed in step 15 have two eigenvalues, 1 and 0. Thus

their entropies are zero, and they both describe pure states; we already knew that, of

course.

35. In a Hilbert space of dimension d the entropy can be at most log d bits, namely when all

eigenvalues λk are equal; they must equal 1/d then (P). That state is called the maxi-

mally mixed (mm) state in that Hilbert space, and the density matrix is proportional

to the identity matrix Î:

ρ̂mm =
Î

d
.



36. A unitary operation Û—which satisfies by definition Û Û † = Û †Û = Î— acts on kets

as

|ψ〉 7→ Û |ψ〉,

and hence (P) it acts on density matrices as

ρ̂ 7→ Û ρ̂Û †.

37. The maximally mixed state ρ̂mm is easily seen to be a scalar, invariant under rotations,

and in fact invariant under any unitary transformation (P). Don’t confuse ρ̂mm with a

zero-angular momentum pure state, which is also invariant under rotations, but for a

different reason (P)!

38. Now let us finally see how mixed states arise from pure states of multiple quantum

systems, if we consider only one of the systems by itself. Consider a pure state for two

quantum systems A and B. In general, we can write such a state as a superposition

|Ψ〉AB =
∑
nm

anm|n〉A|m〉B,

in terms of bases {|n〉A} for A and {|m〉B} for B. Because of normalization we have

∑
nm

|anm|2 = 1.

39. Now consider a measurement just on system A, say an observable ÔA. The expectation

value of that observable in terms of ρ̂AB = |Ψ〉AB〈Ψ| is

〈ÔA〉 = Tr(ρ̂ABÔA) =
∑
n

∑
m

〈n|〈m|ρ̂AB|m〉BÔA|n〉A,

where the ket |m〉B has been moved to the left, as ÔA doesn’t do anything to states

of system B (that is, the observable is really Ô′
AB = ÔAÎB). Thus we can define an

operator

ρ̂A =
∑
m

〈m|ρ̂AB|m〉B ≡ TrBρ̂AB,

in terms of which

〈ÔA〉 = Tr(ρ̂AÔA).

That is, ρ̂A as defined above, describes the state of system A by itself. We also call ρ̂A

the reduced density matrix of system A.



40. The operation indicated by TrB in the previous step is called a ‘partial trace,’ and

more in particular, a ‘trace over B’. We also say, we ‘traced out’ system B. So, if

you want to describe a quantum system by itself, you have to trace out the rest of the

universe!

41. For example, take a pure state of the form

|Ψ〉AB =
|0〉A|1〉B + |1〉A|0〉B√

2
.

What is ρ̂A? Answer: First calculate

|Ψ〉AB〈Ψ| =
1

2
[|0〉A〈0|⊗|1〉B〈1|+ |0〉A〈1|⊗|1〉B〈0|+ |1〉A〈0|⊗|0〉B〈1|+ |1〉A〈1|⊗|0〉B〈0|],

where for convenience I inserted a ⊗ sign, to indicate the different projectors before and

after the sign act on different Hilbert spaces (namely, those of A and B, respectively).

Then take the trace over B. Only the first and fourth term survive this:

ρ̂A = TrB|Ψ〉AB〈Ψ| =
1

2
[|0〉A〈0|+ |1〉A〈1|].

This is a mixed state: Tr (ρ̂2
A) = 1/2 < 1.

42. In matrix form we have (w.r.t to the basis {|0〉, |1〉})

ρ̂A =

 1/2 0

0 1/2

 .

Compare this to step 15: this is really a different matrix than an equal superposition.

ρ̂A could be interpreted, while exercising lots of caution, as ‘either |0〉 or |1〉’, each with

probability 1/2.

43. Another example: Take a pure state of the form

|Ψ〉AB = |ψ〉A|φ〉B.

Then we have

ρ̂A = TrB|ψ〉A〈ψ| ⊗ |φ〉B〈φ| = |ψ〉A〈ψ|.

This is so because

∑
n

〈n|φ〉〈φ|n〉 =
∑
n

〈φ|n〉〈n|φ〉 = 〈φ|φ〉 = 1.

Thus, ρ̂A is pure in this case.



44. The pure state

|Ψ〉AB =
|0〉A|1〉B + |1〉A|0〉B√

2

is entangled, i.e., it cannot be written as a product of states of A and B:

|Ψ〉AB 6= |ψ〉A|φ〉B.

How can we be sure that a pure state cannot be written as a product state? Answer:

just trace out system B, and check if ρ̂A is pure or not

|Ψ〉AB entangled ↔ ρ̂A mixed

|Ψ〉AB not entangled ↔ ρ̂A pure

45. Example: take

|Ψ〉AB = (|0〉A|1〉B + |1〉A|1〉B + |0〉A|0〉B + |1〉A|0〉B)/2.

This state is not entangled, as tracing out B gives a pure state for A (P). Similarly,

tracing out A yields a pure state for B.

46. In fact, for pure states of two systems, A and B, a measure of entanglement is the

entropy of the reduced density matrix of either A or B (both give the same number!).

E(|Ψ〉AB) = S(ρ̂A).

Entanglement has units of bits, too. We actually call them ebits. (This simple expres-

sion for the amount of entanglement does not hold for mixed states of two systems,

unfortunately. Quantifying entanglement for mixed states is a hard problem.)

47. We can always consider a mixed state of a system A as entangled with some fictitious

auxiliary system, F . Namely, first write it in its diagonal form: ρ̂A =
∑
k λk|φk〉〈φk|,

then write

|Ψ〉AF =
∑
k

√
λk|φk〉A|k〉F ,

where {|k〉} is some set of orthogonal states of system F . Tracing out F gives ρ̂A.

Note the square root here! Square roots must appear as we will construct ρ̂A from the

operator |Ψ〉〈Ψ|, which is bilinear in |Ψ〉.



48. One more (long) application: consider the 1-D harmonic oscillator with frequency

ω. We know one nice basis to describe this system, {|n〉}, the set of number states,

eigenstates of the Hamiltonian

Ĥ|n〉 = h̄ω(n+ 1/2)|n〉.

49. But there is another set of states (not a basis!), which are very useful in practice, the

so-called coherent states. For reasons soon to become clear, these states are sometimes

called “quasi-classical” states. They can be defined as eigenstates of the lowering (or

annihilation) operator â. Since that operator is not hermitian, its eigenvalues do not

have to be real. So let’s solve the equation

â|α〉 = α|α〉,

where α is a complex number, the eigenvalue of a.

50. Expanding |α〉 in the number states basis as

|α〉 =
∞∑
n=0

an|n〉,

and substituting this in the eigenvalue equation gives

an
√
n = αan−1.

for all n > 0. We can use this recursive relation to express all coefficients in terms of

a0:

a1 = αa0; a2 = α2a0/
√

2; a3 = α3a0/
√

3! . . .

That is, we find

an =
αn√
n!
a0.

Now the state |α〉 should be normalized:

1 =
∑
n

|an|2 =
∑
n

(|α|2)n

n!
|a0|2 = exp(|α|2)|a0|2,

and so we can choose

a0 = exp(−|α|2/2).

And thus we finally arrive at

|α〉 = exp(−|α|2/2)
∑
n
αn
√
n!
|n〉



51. The coherent state evolves in time as

|α〉(t) = exp(−|α|2/2)
∑
n

exp(−i(n+ 1/2)ωt)
αn√
n!
|n〉 = exp(−iωt/2)|α exp(−iωt)〉.

That is, the coherent state stays a coherent state, but its eigenvalue evolves in time!

Note the different meaning of the two phase factors appearing here (P)!

52. We like coherent states because the expectation values of position and momentum

evolve in time in a nice, classical way (both oscillate at frequency ω!):

〈x〉(t) = 〈α(t)|x̂|α(t)〉 = A cos(ωt− φ)

and

〈p〉(t) = 〈α(t)|p̂|α(t)〉 = −mωA sin(ωt− φ) = md〈x〉/dt,

where the amplitude of the oscillation is

A =

√
2h̄

mω
|α|,

and α ≡ |α| exp(iφ). All this follows from the expectation values of a and a+:

〈α(t)|â|α(t)〉 = α(t),

and

〈α(t)|â+|α(t)〉 = (α(t))∗.

53. Now consider the following mixed state:

ρ̂ =
1

2π

∫ 2π

0
dφ||α| exp(iφ)〉〈|α| exp(iφ)|.

We can view this as a mixture of coherent states with random phase and fixed ampli-

tude |α|.

We can perform the integration over φ, if we first expand the coherent states in number

states. The result is that we can rewrite the same mixed state as

ρ̂ = exp(−|α|2)
∑
n

|α|2

n!
|n〉〈n|.

That is, the mixture of coherent states with random phase but fixed amplitude is

equivalent to a mixture of number states with a Poissonian distribution, with n̄ = |α|2.



54. And one more application: Let us see why a mixed state can be written in infinitely

many different ways as mixtures of pure states. This will take a few steps that will

teach us two things along the way: (i) that “tracing out a system” can be interpreted

in a new way, namely as resulting from a particular measurement on that system; and

(ii) that entanglement cannot be used for signaling superluminally (some researchers in

the past mistakenly thought one could: by the time we get to the “no-cloning theorem”

in Chapter 12 of the textbook, we’ll return to this subject).

55. Given a mixed state for system A written in its diagonal form as ρ̂A =
∑
k λk|φk〉〈φk|,

we write as in item 47

|Ψ〉AF =
∑
k

√
λk|φk〉A|k〉F ,

where {|k〉F} are orthogonal states of (a fictitious) system F . When we calculate the

Trace over system F by sandwiching between the orthogonal bras and kets 〈k| and |k〉,

we get back the diagonal form of ρ̂A. We can interpret this as follows: Suppose we

measure some observable Ô on system F that has the set {|k〉} as eigenstates. Then,

if we get outcome k, the state of A collapses to |φk〉, and this occurs with probability

λk. Thus, the diagonal representation of ρ̂A can be interpreted as arising from this

particular measurement on F .

56. We can write the same Trace in (infinitely many) other ways. Namely, we can pretend

we measure a different observable on F , with different eigenstates, say,

|ψm〉 =
∑
k

Umk|k〉.

For the set of states {|ψm〉} to be orthonormal we require that the complex numbers

Umk are matrix elements of a unitary matrix U (P). In terms of these states we can

rewrite

|Ψ〉AF =
∑
k

√
λk|φk〉

∑
m

U∗
mk|ψm〉 =

∑
m,k

U∗
mk

√
λk|φk〉|ψm〉.

since U−1 = U † = U (∗T ). So, if we introduce the normalized states

|φ̃m〉 =

∑
k U

∗
mk

√
λk|φk〉√∑

k λkUmkU
∗
mk

≡
∑
k U

∗
mk

√
λk|φk〉√

pm
,

then we can write

|Ψ〉AF =
∑
m

√
pm|φ̃m〉|ψm〉.



That is, we can now also write the reduced density matrix as

ρ̂A =
∑
m

pm|φ̃m〉〈φ̃m|.

Note the states |φ̃m〉 are not orthogonal in general.

57. Exactly because the density matrix stays the same no matter what is measured on

system F , as long as the outcome is not known, no information about what observable

has been measured is transmitted.

58. If the dimension of system A’s Hilbert space is d, then there are at most d terms in

the decomposition of ρA from step 56. However, we can actually also write it as a

mixture of a larger number of different terms. Namely, just make the system F larger

by adding more orthonormal states (F is a fictitious system after all: we can choose

its Hilbert space to be larger than that of A.) Going through the same procedure but

with a different (larger) matrix U ′ instead of U leads to a similar expression

ρ̂A =
∑
m

p′m|φ̃′m〉〈φ̃′m|,

except that now the sum is over more terms.

59. Example: Take ρ̂A = 1
3
|0〉〈0|+ 2

3
|1〉〈1|. Write

|Ψ〉AF =

√
1

3
|0〉|0〉+

√
2

3
|1〉|1〉.

Let’s say we measure F in the basis (|0〉 ± |1〉)/
√

2. Then we collapse A to the nor-

malized states (P: insert the identity!)√
1

3
|0〉 ±

√
2

3
|1〉

with equal probability (of 1/2). It is easy to check that an equal mixture of these two

states indeed gives back the same density operator.

But we could also pretend F has a third dimension and measure F in the 3-d basis

(|0〉+ |2〉)/
√

2, (|0〉+ |1〉 − |2〉)/
√

3, (|0〉 − 2|1〉 − |2〉)/
√

6

This collapses A to the normalized (but nonorthogonal!) states

|0〉,
√

1

3
|0〉+

√
2

3
|1〉, 1

3
|0〉 − 2

√
2

3
|1〉

with probabilities 1/6, 1/3, 1/2, respectively. This gives yet another way of decom-

posing the mixture ρ̂A in terms of pure states. Check this explicitly!


