
 



Larmor precession
Approach to thermal equilibrium

Density matrix formalism I
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In the following we will focus on the Hamiltonian with s = 1/2

H = ��̂z + ⌦�̂x ,

On the basis of eigenstates of �̂z , | "i and | #i, Eq. (1) takes the
form
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Density matrix formalism II

Equations of motion ⇢
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Expectation values spin projections I

Density matrix Larmor precession
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From which the average of each spin component can be computed:
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Expectation values spin projections II

generic initial state

| (0)i = a| "i + b| #i

choosing (
a = cos
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the expectations values of the spin projections can be mapped into
points on the unitary sphere
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hŜ
x(t)i = S sin ✓ cos(!Lt)
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Bloch sphere

CHAPTER 9. SPIN PRECESSION AND AND QUANTUM TUNNELING26

that for a given field B the splitting of the two spin levels, | "i and | #i, is
right ~�L, consistently with Eq. (9.9). This is – of course – not accidental
and one may have concluded without too much calculus that a characteristic
frequency is always associated with an energy gap. However, the explicit
dynamic calculation provides a deeper physical insight and helps us set the
formalism for more advanced calculations, such as the specific transition
probabilities with corresponding selections rules.

The averages hŜ↵(t)i in Eq. (9.22) (with � = x, y, z) evolve like the
components of a classical spin �S, obeying the classical equation of motion

�̇S = �� �S ⇥ �B with � =
gµB

~ . (9.23)

The factor � in the equation above is called gyromagnetic ratio. In Fig. 9.1
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Figure 9.1: Visualization of the Bloch sphere. The spin states | "i and | #i

correspond to the nord and south poles, respectively, and are highlighted
with a bullet. Two intersections with the x and y axes are also marked with
a bullet and the form of the relative mixed quantum states indicated. The
arrow defines a point on the Bloch sphere associated with a generic state
|�i = cos( ✓

2)| "i + ei� sin( ✓
2)| #i. In a Larmor precession it is � = �L t.

the mapping between the components of a generic ket |�(t)i in the Hilbert
space and the points on the unit sphere is visualized. The convention is the
same adopted in quantum computing to identify a generic Q-bit on the Bloch
sphere:
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Thermal equilibrium

thermal averages of Ŝ↵ (↵ = x , y , z) for S = 1/2
with Hamiltonian H = gµB
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Time evolution of “spin populations”

stochastic magnetization per spin as

M
z(t) = gµBS [P#(t) � P"(t)] = gµBS n(t)
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Spin-lattice T1 and spin-spin relaxation T2

Eq. motion of ⇢ with phenomenological relaxation terms for ⌦ = 0
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The density matrix with T1 and T2
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yields the averaged spin components
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hŜ
z(t)i = �S n(t)

with S = 1/2 in the present case.
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Spin-lattice relaxation time T1

Ṁ
z =

M
z,eq

� M
z

T1CHAPTER 4. SPIN PHYSICS IN THE TIME DOMAIN 113
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Figure 4.6: Scheme of the energy the spin states of an electron under the
e�ect of a static B field. The coupling with the reservoir determines the
spin-lattice relaxation time and eventually thermalization of the spin system
with the phonon bath.

where P#(t) and P"(t) represent the probabilities of having the spin at time t
in the eigenstate | #i or in the eigenstate | "i, respectively13. The normaliza-
tion condition is P#(t)+P"(t) = 1. To simplify the notation, the dependence
on t will be dropped from the probabilities and �M(t) henceforth. The time
evolution of the two populations is described by the master equation

(
Ṗ# = �"P" � �#P#

Ṗ" = �#P# � �"P"

(4.29)

with �" being the transition rate form | "i to | #i and �# the reverse rate.
These rates result from the coupling of the spin with the environment, iden-
tified with a thermal bath with which the spin is allowed to exchange energy.
Thus, the specific form of �" and �# depends on the details of the coupling of
the spin components with the degrees of freedom and the bath. A concrete
example will be discussed in the next section. For the moment we would like
to remark that, since at thermal equilibrium populations should not vary,
the detailed-balance condition has to be fulfilled:

�"

�#

=
P eq

#

P eq
"

= e�~!L . (4.30)

The above condition simply states that the escape rate from the state | "i,
higher in energy, is exponentially larger than the escape rate from the ground
state | #i (see Fig. 4.6). The detailed balance is a relatively general principle

13Another way to understand the two di�erent populations is to think of a macroscopic
sample containing N non-interaction spin 1/2 of which N�(t) are in the state | #i and
N�(t) in the state | "i, the corresponding probabilities being P�(t) = N�(t)/N and P�(t) =
N�(t)/N .

Spin-spin relaxation time T2
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T2 ⇠ 1/(�Bloc) in the range of 100 µs for NMR experiments
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Bloch equation

two relaxation terms plus spin precession:
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Ṁ
z =

M
z,eq

� M
z

T1
� �

⇣
~M ⇥ ~B

⌘z

VIDEO MRI: https://www.youtube.com/watch?v=1CGzk-nV06g
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Spin Hamiltonian of the Fe4 cluster

• Assuming an Oh crystal field, determine the S of eachFe3+ ion

dx2�y2dz2

dxy dxz dyz

O

Fe3+ Fe3+

eg

t2g

eg

t2g

dx2�y2dz2

dxy dxz dyz

ACHTUNGTRENNUNGence.[1f, 3] Samples obtained by dissolving SMMs in an amor-
phous diamagnetic matrix, such as a frozen organic solvent
or an organic polymer, contain well-separated magnetic
molecules and were crucial to demonstrate the molecular
origin of SMM behavior[1a,6] However, orientational disorder
leads to poorly resolved hysteresis loops and makes these
samples totally unsuitable for detailed low-temperature
studies, which require single crystals. To the best of our
knowledge, use of a crystalline diamagnetic matrix was re-
ported only for SMMs based on single rare earth ions, such
as Na9[Er ACHTUNGTRENNUNG(W5O18)2]·y H2O,[7a] Na[Dy ACHTUNGTRENNUNG(DOTA) ACHTUNGTRENNUNG(H2O)]·
4 H2O,[7b] and [Pc2Ho]NnBu4

[7c] (H4DOTA=1,4,7,10-tetra-ACHTUNGTRENNUNGazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid, H2Pc=
phthalocyanine). The reason why such an approach was not
extended to polynuclear SMMs, which exhibit the richest
low-temperature dynamics, is twofold. First, most SMMs
self-assemble spontaneously from complex reaction mix-
tures, and isolation of the same structure type with a differ-
ent metal ion is not a trivial task. Even greater difficulties
are encountered when trying to individuate a host matrix
for mixed-valent SMMs, such as those of the Mn12 family.
Second, it is evident that solid solutions of different poly-
nuclear metal complexes cannot be prepared in a one-pot
reaction starting from mixed metal salts, as this normally
leads to heterometallic species.[8] The target SMM and its di-
amagnetic analogue must be prepared separately, mixed in
suitable proportions in a solvent, and finally crystallized as a
solid solution. The success of the whole procedure then de-
pends critically on the stability of the components in solu-
tion and on the absence of metal scrambling, that is, ex-
change of metal ions to give heterometallic species.

Herein we show that [Fe4(L)2ACHTUNGTRENNUNG(dpm)6] (1),[9] one of the
most robust SMMs synthesized to date, can be hosted in
crystals of the diamagnetic compound [Ga4(L)2 ACHTUNGTRENNUNG(dpm)6] (2)[8]

(Scheme 1; H3L=2-hydroxymethyl-2-phenylpropane-1,3-

diol, Hdpm=dipivaloylmethane). Solid solutions of 1 and 2
crystallize without metal scrambling for doping levels down
to 1 mol % Fe4. We present detailed spectroscopic and mag-
netic investigations on 1 and on its solid solutions with 2 in
both the thermally activated and quantum regimes. The pro-
found differences detected in the field dependence and effi-
ciency of QT provide sound experimental evidence for the
effect of intermolecular interactions on SMM behavior.

Results and Discussion

Synthesis and studies in solution : Diamagnetic analogues of
1 can in principle be based on cobaltACHTUNGTRENNUNG(III) or galliumACHTUNGTRENNUNG(III)
ions, whose ionic radii in octahedral coordination (0.61 and
0.62 !, respectively) are similar to that of high-spin FeIII

(0.65 !).[10] We were so far unable to prepare [Co4(L)2-ACHTUNGTRENNUNG(dpm)6], presumably due to the inertness of cobaltACHTUNGTRENNUNG(III) com-
plexes. By contrast, [Ga4(L)2 ACHTUNGTRENNUNG(dpm)6] (2) could be synthe-
sized and isolated as 2·Et2O in good yield (Scheme 1).[8]

When mixed together in benzene solution, 1 and 2 are
stable and undergo no metal scrambling over long times.
This was clearly demonstrated by preparing the isotopically
labeled compound [Fe4(L)2ACHTUNGTRENNUNG([D18]dpm)6]·Et2O (1D·Et2O),
where [D18]Hdpm is a Hdpm ligand featuring 98 % deutera-
tion on tBu groups (Scheme 1).[9a] Complexes 1D·Et2O and
2·Et2O were dissolved in benzene in 1:1 ratio and 2H NMR
spectra recorded as a function of time (Figure 1). The broad

peak at 10.5 ppm in a freshly prepared sample is characteris-
tic of tBu protons in 1[9a] and remains essentially unchanged
over 18 h (similar results were obtained for 6:94 mixtures;
see Figure S1 in Supporting Information). Notice that the
replacement of a Ga ACHTUNGTRENNUNG(dpm)2 with a Fe ACHTUNGTRENNUNG(dpm)2 group in 2
would afford an NMR peak around 12.9 ppm, characteristic
of magnetically isolated FeACHTUNGTRENNUNG(dpm) units.[9a] Such a peak is not
observed within experimental sensitivity. The pair of signals
at 1.1 and 1.3 ppm arise from dpm anions in Ga4

[8] and re-
flect slow exchange of dpm! ligands between 1D and 2 (7 %
exchange after 18 h).

On the basis of the NMR results, crystallization of 1 and 2
was optimized to be complete in 5–10 h. Slow evaporation
of 7:3 v/v benzene/n-heptane solutions under vacuum over a
paraffin-oil trap quantitatively afforded the isomorphous
benzene solvates 1·C6H6 and 2·C6H6 (see Figure S2 in Sup-
porting Information). Solid solutions [(Fe4)x ACHTUNGTRENNUNG(Ga4)1!x(L)2-ACHTUNGTRENNUNG(dpm)6]·C6H6 were also successfully prepared by the same
technique with x=0.01 (3 a·C6H6), 0.02 (3 b·C6H6), 0.05

Scheme 1. Sketched structures of 1, 1D, and 2, omitting the tripodal li-
gands L3! with the exception of their bridging O atoms.

Figure 1. 2H NMR spectra of 1D·Et2O (lower trace) and of a 1:1 mixture
of 1D·Et2O and 2·Et2O in benzene at different times t after preparation.
The concentration of each species is about 10 mm. The weak signal at
7.15 ppm (*) is due to D traces in the solvent.
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• Determine the sign (FM or AM) of the exchange interaction
between two neighboring Fe3+ ions (see structure on the right)

• Referring to the Hamiltonian

He↵ = �J Ŝ1 ·

⇣
Ŝ2 + Ŝ3 + Ŝ4

⌘

determine the g.s. multiplet ŜT = Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4
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• Based on what you have determined above, explain with your
own words why the Hamiltonian

He↵ = �D

⇣
ŜT
z

⌘2
+ 2µB B ŜT

z

produces the scheme of levels of the figure on the right panel

c, and c’, are due to resonances between couples of single-
molecule states (MS and M0

S) located on opposite sides of
the anisotropy barrier. Neglecting the effect of E and B0

4,
these resonant fields are indeed expected to be integer mul-
tiples of D’= jD j / ACHTUNGTRENNUNG(gmB), that is, 0.446 T for the D and g pa-
rameters obtained by HF-EPR.[1a] Additional prestep fea-
tures are detected around !0.37 and !0.81 T which cannot
be assigned to single-molecule tunneling processes. A simi-
lar fine structure was previously observed in the hysteresis
loops of tetramanganese complex [Mn4O3 ACHTUNGTRENNUNG(OSiMe3) ACHTUNGTRENNUNG(OAc)3-ACHTUNGTRENNUNG(dbm)3] (4) (Hdbm=dibenzoylmethane) and attributed to
two-molecule tunnel transitions mediated by intermolecular
exchange interactions through H-bonds. In the suggested
spin–spin cross-relaxation (SSCR) mechanism,[12] two mole-
cules undergo simultaneous tunneling of magnetic moment,
with energy conservation but a net variation of the magneti-
zation. By using the Zeeman diagram in Figure 4, it is
straightforward to show that resonances d and e are expect-
ed at D’ ACHTUNGTRENNUNG(2S"1)/ACHTUNGTRENNUNG(2S+1)=0.365 T and D’ ACHTUNGTRENNUNG(2S"1)/S=0.802 T,
in close agreement with observations.

We now turn to the 1 %-doped sample 3 a·C6H6 (Figure 3,
bottom), which displays an even more spectacular staircase
structure in its hysteresis loops. Remarkably, the position of
the single-molecule resonances is retained, but the above-
described extra steps are absent. This is the first experimen-

tal proof that prestep features in SMMs arise from intermo-
lecular interactions (preliminary measurements on 3 d–
f·C6H6 showed that SSCR disappears for x<0.10). Further-
more, since in the studied compounds the magnetic core is
enveloped in an hydrophobic shell of chelating dpm anions,
no significant intermolecular exchange pathways can be an-
ticipated. Thus SSCR in 1·C6H6 can be ascribed with confi-
dence to a through-space (dipolar) mechanism.

The occurrence of intermolecular magnetic couplings was
also clearly revealed by examining the width and position of
the zero-field resonance in the two samples. In the lower
branch of the hysteresis loops (i.e., when zero field is
crossed after saturation in a strong negative field) the step
occurs at ca. + 8 mT in 1·C6H6 but exactly at zero field in
3 a·C6H6. Hence, each molecule in a saturated sample of
1·C6H6 experiences an internal field which is parallel to the
magnetization. To gain more insight, we measured the short-
time square-root relaxation rate Gsqrt around H =0 in 1·C6H6

and in samples 3 a,d–f·C6H6 after magnetic saturation in a
strong negative field (Figure 5). In 1·C6H6 the relaxation
rate follows a peak function with maximum at 8.1 mT and
full width at half-maximum (FWHM) of 6.8 mT. As the Fe4

concentration is reduced to x=0.50 (3 f·C6H6), the peak
shifts to around 2.2 mT while maintaining approximately the
same FWHM. On further lowering the concentration, the
maximum in the relaxation rate approaches zero field and
narrows significantly. In the most diluted sample, 3 a·C6H6,
the resonance width is 1.2 mT, that is, five times smaller
than in 1·C6H6.

According to Prokof’ev and Stamp (PS), Gsqrt is propor-
tional to the normalized distribution of longitudinal internal
fields in the sample.[5c–e] The dipolar contribution to the
latter can be estimated once the crystal structure and the
sample morphology are known. We then performed a calcu-
lation in the point-dipolar approximation on a portion of
crystal lattice comprising more than 40 000 Fe4 and mimick-

Figure 3. Hysteresis cycles recorded by applying the magnetic field along
the easy axis (Z) of single crystals of 1·C6H6 (top) and 3a·C6H6 (bottom)
at 40 mK and different field sweep rates (Msat is saturation magnetiza-
tion).

Figure 4. Zeeman diagram calculated from Equation (1) with S=5, D=
"0.416 cm"1, g=2.00 (isotropic), E= B0

4 =0, and H applied along the easy
axis Z. The lowest levels are labeled with the MS quantum number. Un-
primed/primed letters label tunneling events which occur in the lower/
upper branch of hysteresis loops, that is, when the system is first prepared
in the MS = ++5/"5 state by applying a strong negative/positive field.

Chem. Eur. J. 2012, 18, 3390 – 3398 ! 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemeurj.org 3393

FULL PAPERIsolated Giant-Spin Centers

Taken from L. Vergnani et al. Chem. Eur. J. 18 3390 (2012).

• Relate the level crossing to the steps observed in the
magnetization curve of the Fe4 molecule.
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Bloch vs stochastic LLG equation

h
˙̂SiQM = �� hŜiQM ⇥ ~B

*

+

• Stochastic LLG ~̇S = �~S ⇥

n
�

h
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i
+ ↵ ~̇S
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stochastic magnetization ~M(t) obtained
from many realizations of noise ~Brnd(t)

• Bloch equation ~̇M = �� ~M ⇥ ~B + T
�1
1,2

⇣
~Meq

� ~M(t)
⌘

deterministic equation for the
stochastic magnetization ~M(t)

Alessandro Vindigni, ETH Zürich Master Equation and approach to thermal equilibrium


