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q-LRO = quasi-long-range order, ( _)([) g(O)) ~
LRO = long-range order, (S(r) - 5(0)) = constant
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Domain walls (DWs) can be defined as the boundaries between regions with
opposite magnetization and, besides the Ising model, they play a crucial role
for many theoretical and applicative aspects of magnetism. In particular,
their internal structure and the energy associated with the creation of a DW
in a uniformly magnetized configuration are relevant (think of, e.g., the Lan-
dau’s argument that rules out ferromagnetism in the 1D Ising model). Even
if DWs may be characterized by a complicated internal structure dependent
on several spatial variables, here we consider the case in which the spin direc-
tion depends only on one spatial coordinate. Let us identify that coordinate
with the lattice index i:

Ng
Hiw=—Y [J@ D (5;)2} ; (8.2)

=l

where S; are classical spins and the constants J and D have to be thought of
per unit length or per unit surface if the dimensionality of the original lattice
was D=2 or D=3, respectively. With the Hamiltonian (8.2), the DW can be

™ |
R

D/J

Figure 8.1: Domain-wall energy in J units vs D/J: minimum energy solution
of the non-linear equation computed numerically (solid line); continuum
limit solution (dashed line). Inset: spin profile vs lattice distance: sharp wall
(low-right) and broad wall for D/J = 1072 (up-left).
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larger than one lattice spacing. In fact, spreading the wall over more than one
lattice unit reduces the global exchange-energy cost. On the other hand, the
anisotropy term would favor configurations with as less spins misaligned to
the easy axis, z, as possible. The DW profile results from the competition
between these two energies (two opposite limits are reported in the insets
of Fig. . The lowest-energy deviations from the uniform state can be
parameterized through the angle that each spin forms with the z axis, 4, as

Ny
Haw = Z [J L e P DR 91] . (8.3)

i=1

The energy cost for creating a DW in a uniformly magnetized configuration
is given by the spin profile which fulfills the boundary conditions

0 =

b O (8.4)
HNm =0

and minimizes the energy (8.3) with respect to 6;:

a3L[dw
00;

D
= siim (61 o 91'_1) — sin (91‘4_1 P, 91) aF 7 sin (291) =100, (85)

Equation (8.5) can be solved numerically and the solution provides the spin
profile with respect to which the energy 1) is stationary. The true lowest-
energy profile can be obtained comparing different solutions, among which

the sharp-wall profile (see lower-right inset of Fig. :

{ 0, =m for 1§i<% (8.6)

which is also a solution of Eq. . In Fig. the resulting energy (solid
line) is compared with that obtained from a continuum limit calculation
(dashed line) — that we are going to present in the next paragraph — as a
function of the ratio D/.J.

8.2 Broad domain walls: continuum limit

An analytic expression for the energy of a broad DW can be derived using
the continuum formalism, in which the lattice index ¢ becomes a continuum
variable and finite summations are replaced by integrals. For simplicitly,
we will assume spatial coordinates to be dimensionless or expressed in lattice
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units (formally @ = 1). We will express the exchange coupling by a term con-
taining spatial derivatives, as done in a previous chapter for the XY model.
The continuum equivalent of the energy (8.3) reads

1
HdW: 2J/

The exchange-energy term has to be understood a

aﬁ@))? dz —D / [S*(r))* d%z + const. (8.7)

2

0:5(r)| = (9:57 ()" + (8:5¥(x))* + (3:5°(r))* - (8.8)

Using spherical coordinates

8S(r)| = (8,0)% +sin?(0) (8,0)

|S*(r)]? = cos?6

’ 2

(8.9)

the Hamiltonian (8.7) can then be written as

Haw = 37N | [(jzf”m?wm) @)1 Y ew

— DNyNZ/COSQ(H(x))dx—i— const

where we have implicitly assumed the integration domain to be a paral-
lelepiped N, N, N,. The functions §(x) and ¢(z) that minimize the func-
tional Eq. (8.10) are obtained as solutions of the Euler-Lagrange equation

Jsin?(8(z)) 22 + 2 sin(8(x)) cos(8(z)) (£) (%) =0
J% — Jsin(f(x)) cos(f(x)) (‘;—“;)2 —2Dsin(f(x)) cos(f(x)) = 0.
(8.11)
The solution compatible with boundary conditions

{ lim,_, o 0(z) =7 (8.12)

lun b G =)

IFor the general case in which the spin profile is modulated along the three spatial
directions z, y, z, the exchange-energy term reads

’V%f = (8:5%(1))* + (8,57 (r))” + (3:57(1))?
+ (8:5¥(0))? + (8,5¥(1))” + (8,8 (r))?
+ (8:5%(x))? + (8,57(r))? + (8,5%(r))? .
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is given by

o(x) = const.

{008(9(36)) = tanh () (8.13)

with 0 = y/J/(2D) representing the DW Widt Such a solution was pro-
posed by Landau and Lifshitz in 1935.

The energy density associated with the spin profile 8 Egiy = BV 21D
(per unit length for D=2 and per unit surface for D=3). In Fig. the DW
energy obtained numerically for the discrete-lattice calculation (solid line) is
compared with that obtained in the continuum limit (dashed line) as a func-
tion of the ratio D/J. The agreement is already good for ratios D/J < 0.3.
In the opposite limit, the discrete lattice calculation recovers the DW energy
of the Ising model £qy = 2J (sharp DW defined by Egs. (3.6)).

In those relevant limits one has

J<D=6§=1 and  Eqy = 2J
(8.14)

JoSDi— 0 o s AN d S . = O NI,

For J < D, the DW cost equals the Ising case. Concerning J > D, &gy iS
one-soliton energy. As one can appreciate in Fig. the two regimes are
very well recovered and the transition region, where none of the two limits
is expected to hold, is surprisingly narrow. The crossover between the
sharp-wall (8 = 1) and the broad-wall (¢ > 1) regim¢®| occurs at D/.J = 2/3.

In summary, according to Egs. (8.14), DWs in the classical Heisenberg
model behave like

; o (8.15)
continuum limit ORI =Sl SR

{Ising model toraP S 2/ 3

Typically, metallic nanowires of technological relevance fall in the broad-

wall regime. In fact, materials like Co, Ni or Fe are characterized by D ~1—10

K (~0.1 =1 meV) and J~100 — 500 K (~10 — 50 meV) corresponding to a
DW width of the order 10 — 100 nm.

2Sometimes the DW width is defined with some numerical factors of difference with
respect to 6: mv/J/(2D) or \/2J/D for instance.

3The crossover ratio D/J = 2/3 can be obtained analytically by analyzing the stability
of the sharp-wall profile, Egs. , against small deviations between successive angles 6;
(B. Barbara, Journal de Physique 34, p. 139 (1973)).
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8.3 Loss of magnetic order

We now ask ourselves how the Mermin-Wagner argument for the absence
of spontaneous magnetization at finite temperature in the 1D and the 2D
Heisenberg models is affected by the introduction of a uniaxial anisotropy
D > 0. In this case, the spin-wave dispersion relation acquire a constant
term proportional to the anisotropy D

I'(q) = Jg° + 2D + gusB. (8.16)

Therefore, at the same level of approximation as Eq. (7.27), the thermal
average of transverse spin components scales like

qul dq

a\2 %Y T ke 152l
W) asbs J@ + 2D

dmin

(8.17)

As this integral is never divergent for D=1, 2, or 3, we conclude that linear
excitations do not manage to destroy ferromagnetism at every 7' # 0. In
other words, as long as only spin waves are considered, this model could
be compatible with ferromagnetism at finite temperature. However, domain
walls are another type of excitations to be taken into account. Qualitatively,
their role in this model is similar to the role they play in the Ising model.
With this simple argument, we conclude that the Heisenberg model with
uniaxial anisotropy behaves as the Ising model from the perspective of the
“truth table” of magnetic order discussed in Section (and falls in the
same universality class).

For the 1D case, the Landau’s argument put forward for the Ising model
can be adapted replacing the energy of a sharp (Ising) DW with the more
general expression gy, As a result, one would expect the correlation length
to diverge at low temperature as

§ ~ exXp [gdw/(kBT)] 6 (818)

In reality, thermally-excited spin waves interplay with DW excitations, sup-
pressing the energy barrier £y,,. The Arrhenius dependence of Eq. is,
however, retained and we interpret this fact as an indication that right DWs
are responsible for the loss of magnetic order at finite temperature.



