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7.2 The Classical Heisenberg model

In this section we discuss the classical version of the Heisenberg spin Hamilto-
nian, without uniaxial anisotropy (D = 0). The substitution of the quantum-
spin operators by classical spins is somewhat justified when the relative spac-
ing between levels inside each multiplet S(n) becomes smaller and smaller.
Moreover, when correlations among spins develop, cooperative effects cre-
ate a sort of collective large spin which behaves classically. In formulas, the
replacement of quantum-spin operators by classical vectors reads

S(n) = S(n) = (sin 6 cos ¢, sin fsin g, cos §) . (7.8)

Since the classical spin on the r.h.s. has unitary modulus, the factor S (S+1)
needs to be re-absorbed into the definition of g to recover the Curie law at
T > J (the exchange interaction constant can be rescaled similarly). The
spin Hamiltonian then reads

H=—1] Y 8w Sw)+amBY S0, (19

[n—n'|=1

and the partition function

Z= / o, / i / dOyes s (7.10)

with dS2,, = sin 0,,d0,,dp,, being the solid-angle element of the spin located at
the site n.

Stability against linear excitations

With the classical spin Hamiltonian , the minimal energy is obtained
by aligning all the magnetic moments along the direction of the applied field
(spins along negative z direction). We consider how the energy increases
due to small deviations from this configuration. Our goal is to simplify
the original problem by means of an effective Hamiltonian that is formally
equivalent to the one describing a system of coupled harmonic oscillators. To
this end, we may write

| 1
S*(n)=— [1-— So‘an—l — 5%(n))?
g Ll et e
with the hypothesis (8%(n))* < (S*(n))?,
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with « labeling, in this case, the transverse spin components. The approxi-
mation in Eq. (7.11) affects the Hamiltonian as follows:
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(7.12)

where, by nothing that the double summations »_ >, and >, >° , are
actually the same, we have defined

Ho: :%ZnJZZ(S“( R 7,] Z Zsa 5%(n') /}’Q{ well l}&(\@,\”\ug

[n—n/|=1 «
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+59unB DR ([ )
and the constant ground-state energy
1
e — —§anJ — gugBN . (1)

The Hamiltonian Hj, .., written in Eq. is equivalent to the Hamilto-
nian of NV coupled harmonic oscillators Wthh can be decoupled by the usual
Fourier transform in the discrete space:

(7.15)

with the orthogonality relation

Ze“q )% — Ngqrh (7.16)
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For simplicity we assume unitary lattice constant. It is convenient to evaluate
the two relevant summations appearing in the Hamiltonian of Eq. (7.13)
separately. The first summation reads

P ZZS“ )5%(¢') e~Hate): Z|S“ g

n
—

— —_—
This is nothing but the @mfor the discrete-lattice Fourier

transform. For what concerns the second summation on the right-hand side

of Eq. (7.13)), we first rewrite it as
L e S ZZSa )S%(n + 8) (7.18)

[n—n/|=1

where 0 is a vector connecting the site n with its nearest neighbors. For
simplicity, we will consider just a linear (z, = 2), square (z, = 4) and
simple-cubic (z, = 6) lattice for D=1, 2 and 3, respectively. Passing to the
Fourier space one finds

EErweai) =Yy Zsa )50(g) e it
7.19
_ZZ|S«1 |2 —ig-d _ Z|Sag |2 Z 2COS ( )

{6>0}

the notation {J > 0} means that the summation extends over half of the
nearest neighbors of the spin located at site n: it consists of z,/2 terms.
Egs. (7.17) and (7.19) enable us to decouple the elastic Hamiltonian given
in Eq. (7.13), which then reads

Hp.o :%JZZ Zm— Y 2cos(g-4) | [S%(g)?

{6>0}
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Figure 7.3: Sketch of a spin-wave excitation for the 1D Heisenberg model,
with period equal to eight lattice units.

Indeed, for the Heisenberg model, the linear excitations associated with
the quadratic Hamiltonian in Eq. are spin waves with dispersion re-
lation 7ww(q) = I'(g). Spin waves are collective excitations analogous to
phonons. Similarly to phonons, spin waves are also quantized and the spe-
cific dependence of I'(g) on the wave vector (especially for ¢ ~ 0) determines
the behavior of the magnetization at low temperature (in the absence of
anisotropy). The dispersion curve I'(¢) can be measured, e.g., by inelastic
neutron scattering. 7
Coming back to our goal, we proceed by evaluating the average of fluc-
tuations, namely those terms in Eq. (7.11) that we have assumed to be
small for linearizing the Hamiltonian (7.9). The approximated Hamiltonian,
Eq. 7 consists of N independent quadratic degrees of freedom so that
the equipartition theorem can be applied:

1 Bors Ll e S

(... ) denotes thermal average performed using the Hamiltonian Hy,, in
Eq. (7.20). Thermal averages of the squared transverse components in real
space read

(@) ) = 5 DS @S @™ = T 1@

i

(7.23)
where we have used the fact that transverse components fluctuate randomly
SO that <S“( )S(q))in = 00.4(|S*(q)|*)sn- Note that the right-hand side of
Eq. is independent of the lattice site, thus the label n will be dropped
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henceforth from ((S*(n))?)s. In order to evaluate whether the considered
linear excitations are able or not to destroy ferromagnetism, we shall let the
field B — 0*. First, we approximate the summation on the right-hand side

of Eq. (7.23) with an integral

ayzy o, kBT [ d°¢
(=50 | g e

Since what matters is the behavior for small values of ¢ (i.e., the effect of
fluctuations at large spatial scales), the denominator of the integral can be
linearized as

(x4

1 Akl |
%C»“ L(q) > J2—27 ) (1=5au)+9unB = Jan—2J (5~ 54%)+9psB = Jo*+9pmB
/J4

— 2 ALY

q (7.25)

with p=1...D and ¢> = 3 ¢, which yields

Q kT d°q

L S = / 7.26
B il

When taking the limit B — 07, the integral in Eq. (7.26) has an infrared
g n«kCQNQ divergen(}(ﬂ for D<2. The consequences of such a divergence can be appreci-

—ated more effectively by setting a lower bond to the integral: g, = 7/Na,
Oox Nl@ with N, being of the order of the linear size of the system in lattice units.
Depending on the dimensionality of the lattice we have

A qD_1 dq D=1 <(Sa)2> Rt g]\]&
(s~ [ > D=2 ((5) ~BIm(N,) (727)

¢ D=3  {($%)) < oo

2

In order to understand what a divergence with increasing N, means, it is
convenient to enumerate the mathematical steps that we followed according
to their physical sense:

o We assumed the system to be in a ferromagnetic state at T' = 0, namely,
with all the spins aligned along the same direction.

o We let each spin deviate by a small amount from its direction of align-
ment, z.

2A possible ultraviolet divergence does not matter i) because the lattice unit sets a
physical upper limit to large values of g ii) because we are interested in fluctuations acting
on large spatial scales corresponding to g ~ 0.
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dimension | Ising | XY | Heisenberg

1D

2D q-LRO /q-LRO
3D
Para = paramagnetism, (S(r) - S(0)) = 0
SRO = short-range order, (S(r) - S(0)) ~ e~/
q-LRO = quasi-long-range order, ( _)([) g(O)) ~
LRO = long-range order, (S(r) - 5(0)) = constant




