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Lecture: 28.11.2021

2D lattice

An argument similar to the Landau’s one, holding for the 1D Ising model,
can be developed for the 2D system as well. In this case we should refer
to the possibility of reversing a cluster of spins enclosed in a perimeter of
l lattice sites and embedded in a region of spins all pointing in the same
direction, as sketched in Fig. 6.3. For simplicity we consider a square lattice
and sharp domain walls, meaning that all the spins are assumed to point
either along Sz = +1 (outward) or along Sz = �1 (inward). The total cost
in terms of exchange energy is of the order ⇠ 2J l. To estimate the entropy
variation due to the creation of a reversed cluster in an otherwise uniform
spin configuration, we can think of a self-avoiding random walk. Suppose
that a walker can move with one step from the center of a square in Fig. 6.3
to the center of a neighboring square. At each step the walker has at most
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� spin pointing outward Sz = +1

⌦ spin pointing inward Sz = �1

Figure 6.3: Schematic representation of a cluster of spins pointing along
Sz = �1 (inward) in a 2D Ising lattice in which all the other spins point
along Sz = +1 (outward). The perimeter of the cluster l is highlighted with
a blue thick line.
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three choices of which way to go, since it has to avoid itself (the walker cannot
take a step back in the direction where it came from). A possible random
walk is highlighted with a thick line in the figure. Based on these simple
considerations, we expect the number of closed loops corresponding to the
perimeter l to be of the order pl, with p < 3. As a result, the free-energy
variation associated with the flip of a cluster delimited by a perimeter l is
roughly �F = 2J l � kBT l ln p. Therefore, for T < 2J/(kB ln p) the ordered
phase – with all the spin aligned along Sz = +1 – should be stable against
the formation of large domains with reversed spins. This argument for the
existence of an ordered low-temperature phase in this 2D Ising model and,
thus, of a finite Curie temperature Tc was first put forward by Peierls – in
more precise terms.

Rigorous results

The Ising model represents a particularly lucky case in which the heuristic
arguments given above can be checked by solving the problem analytically.
Even if we will not derive these results, it is useful to recall which steps should
be followed to prove rigorously whether a model is consistent with a phase
with spontaneous magnetization (finite magnetization in zero external field)
for T 6= 0 or not. To this end, one has to compute:

1. the partition function

Z = T r
�
e��H[{Sz

(n)}] (6.20)

where � = 1/(kBT ) and the trace is obtained by letting each discrete
variable take the two possible values Sz(n) = ±1 (Z is a sum with 2N

terms!)

2. the thermal average of the magnetic moment

m(T, B) = � 1

N

@F

@B
=

1

N

1

�

@ ln Z
@B

(6.21)

3. the limit
m(T, 0) = lim

B!0+
m(T, B) (6.22)

and evaluate if there exists a temperature Tc below which the
limit (6.22) takes a value di↵erent from zero.

This procedure can be carried out analytically for the Ising model in 1D and
2D producing di↵erent results:
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For 1D, no spontaneous magnetization is possible at any finite temper-
ature.

For 2D, a spontaneous magnetization appears for T < Tc. The transi-
tion temperature is given by

sinh

✓
2J

kBTc

◆
= 1 ) Tc =

2

ln(1 +
p

2)

J

kB

' 2.27
J

kB

. (6.23)

The comparison with the MF theory shows that the latter typically
overestimates the transition temperature: The critical temperature of
the 2D Ising model reported in Eq. (6.23) has to be compared with
TMF

c
= 4J/kB (zn = 4 for a square lattice). Expanding the spontaneous

magnetization close to Tc yields

m(T, 0) ⇠ (Tc � T )
1
8 . (6.24)

Thus, for the 2D Ising model the exact value of the critical exponent
is � = 1/8, at odds with the MF value �MF = 1/2.

Indeed both these exact results obtained for the 1D and 2D Ising model show
that the MFA overlooks some important features of the transition from the
paramagnetic to the ferromagnetic phase, possibly occurring upon lowering
the temperature.



Chapter 7

Spin models with continuous
symmetry

Lecture: 28.11.2022

7.1 The XY model

When consistent with the symmetry of the problem, the quantum mechanical
operators representing the e↵ective spin of a magnetic atom can be replaced
by a two-component classical vector ~S = (cos ', sin '), living – say – on the
XY plane. An ensemble of such spins, disposed on a lattice and coupled via
the exchange interaction, defines the classical XY model, whose Hamiltonian
can be expressed in terms of the angle ' formed by each spin with some
lattice direction:

H = �1

2
J

X

|n�n0|=1

~S(n) · ~S(n0) = �1

2
J

X

|n�n0|=1

cos('(n) � '(n0)) . (7.1)

Concretely, it can be energetically convenient for the magnetic moments of a
solid to lie in a planar configuration when an easy-plane single-ion anisotropy
is present. Alternatively, a planar configuration can be stabilized by the
dipole-dipole interaction, of magnetostatic origin.

In this session we will derive a necessary condition for the two main
classical-spin models with continuous symmetry – the XY and the Heisenberg
model – to be compatible with a phase with spontaneous magnetization. This
argument relies on

a linearization of the pair-spin interaction

104
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the use of the equipartition theorem.

Since we will consider Hamitlonians in which the d.o.f. of spins sitting at
di↵erent lattice sites are coupled, after the linearization we will obtain a
quadratic Hamiltonian whose d.o.f. are still coupled with each other. Due
to this fact, the results obtained in Chapter 5 for the ideal gas – in which
quadratic d.o.f. are not coupled with each other – cannot be applied at this
stage. Instead, some judicious transformation of coordinates will be needed
in order to decouple the d.o.f. of the linearized spin Hamiltonian. This
transformation is the same as the one used to decouple the d.o.f. of a chain
of harmonic oscillators and, subsequently, apply the equipartition theorem.
Therefore, we find it convenient to reproduce this calculation for the chain
of harmonic oscillators before moving to the systems of our interest.

Chain of harmonic oscillators

We consider an array of harmonic oscillators on a 1D lattice. The d.o.f. of
this problem are the diplacements uk of individual atoms from their minimal
energy position. The Hamiltonian for these elastic excitations reads

H =
NX

k=1

m

2
u̇2

k +
1

2

NX

k=1

Ke (uk+1 � uk)
2 (7.2)

The first summation on the r.h.s. represents the kinetic energy and can
be handled similarly to the case of the ideal gas1. The second summation
represents the potential energy of coupled harmonic oscillators. Clearly, the
eqauipartition theorem cannot be applied to this portion of the Hamiltonian
straightforwardly, though the variables uk still contribute as a quadratic form.

1
The only di↵erence is that now atoms are disposed on a lattice and, therefore, there

is no N ! term in the partition function to account for the correct Boltzmann counting.

uk�1 uk uk+1

Figure 7.1: Schematic representation of the displacement field uk in the 1D
chain of harmonic oscillators described in the main text.
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By means of the discrete Fourier transformation

uk =
1p
N

X

q

ũqe
iqk

the Hamiltonian (7.2) can be rewritten as

H =
X

q


Ke (1 � cos q) |ũq|2 +

1

2
m | ˙̃uq|2

�
,

namely in a form in which the new d.o.f. ũq are not coupled with each other
anymore. Note that the prefactor of |ũq|2 is not constant but depends on q.
At this point we can treat ũq and ˙̃uq on the same footing as we did for px in
the ideal gas calculation and obtain

Ke (1 � cos q) h|ũq|2i =
1

2
kBT

1

2
mh| ˙̃uq|2i =

1

2
kBT .

The first equation provides the thermal average of the Fourier amplitudes of
the displacement field uk. Knowing these quantities it is possible to determine
the behavior of the averaged squared displacements of atoms in real space
by inverting the Fourier transformation:

hu2

ki =
1

N

X

q

h|ũq|2i =
1

N

X

q

kBT

2Ke (1 � cos q)

where in the last passage we have used the equipartition theorem. The
summation on the wave-numbers q is usually evaluated taking the continuum
limit

1

N

X

q

! 1

2⇡

Z
dq

and expanding (1 � cos q) at the denominator for small values of q:

hu2

ki =
1

2⇡

kBT

Ke

Z qmax

qmin

dq

q2

where the extremes of integration can be assumed qmin = ⇡/N (N being
the number of atoms in the chain) and qmax ! 1. Obviously, the integral
above diverges for any T 6= 0 in the thermodynamic limit N ! 1, meaning
that the thermal average of square displacements diverges as well. The same
calculations could be repeated for D=2 and D=3: only in the last case the
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integral does not diverge. This argument is used to state that crystals cannot
exist both in 1D and in 2D, because they are unstable w.r.t. thermal fluctu-
ations. Later on we will adapt this calculation to rule out ferromagnetism at
finite temperature for classical spin models with continuous symmetry, i.e.,
the XY and the Heisenberg model.

From the knowledge of h|ũq|2i also the averaged correlation between the
displacements of atoms sitting at di↵erent sites in real space can be computed:

h(uk+r � uk)
2i =

2

N

X

q

[1 � cos(qr)] h|ũq|2i

=
2

N

X

q

[1 � cos(qr)]
kBT

2Ke (1 � cos q)
.

(7.3)

For spin models, this quantity is directly related to the behavior of the pair-
spin correlation function.

Linear excitations of the XY model

Now we are ready to apply the formalism introduced in the previous section to
discuss the properties of the XY model at finite temperature. One important
aspect is that the Hamiltonian (7.1) is not quadratic in the d.o.f. '(n).
However, if we limit ourselves to considering small variations of the '(n)
angle between neighboring sites, the Hamiltonian takes the form

H = �1

4
J

X

|n�n0|=1

('(n) � '(n0))2 + const. (7.4)

Each pairs of nearest neighbors yields a contribution that can be expressed
as the derivative of a continuous variable. For instance, for the coupling
between two neighboring spins of a spin chain one has

('k+1 � 'k)
2 ! (@x')2 .

For lattices with higher dimensionality (with sites disposed along Cartesian
axes) the coupling of one spin with its neighbors along di↵erent directions
produces terms containing the derivatives @y' and @z'. Therefore, the XY
Hamiltonian is generally written in the continuum formalism as

H =
1

2
J

Z
(r')2 dDr . (7.5)

Note that in the continuum limit the factor one-half that was introduced in
the Hamiltonian (7.1) to avoid double counting of interactions is not needed.
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Figure 7.2: Sketch of a vortex excitation in the 2D XY model.

Similarly to what done for the 1D chain of harmonic oscillators, the Hamil-
tonian (7.5) can be decoupled passing to the Fourier space

H =
1

2
J

1

(2⇡)D

Z
q2|'̃(q)|2 dDq (7.6)

in such a way that the equipartition theorem can be applied to evaluate the
thermal averages of the Fourier amplitudes h|'̃(q)|2i. In the assignment,
you will see that from the knowledge of this quantity the low-temperature
behavior of pair-spin correlations

h~S(r) · ~S(0)i (7.7)

can be determined, the result being remarkably di↵erent for the 1D and the
2D case.

Vortices in the 2D XY model

Besides the linear excitations described above, the Hamiltonian (7.5) is also
compatible with vortex excitations. Vortices are topological excitations to
some extent equivalent to domain walls in the 1D Ising model. In the two-
dimensional case (D=2), it is convenient to parameterize the position of a
certain spin on the XY plane through polar coordinates (r, �). Then, the '
field is a function of this pair of coordinates, i.e., '(r, �). In this description
a vortex is represented, e.g., by a dependence of '(r, �) = � + ⇡/2 which
yields the vector field ~S(r, �) = (cos ', sin ') = (� sin �, cos �).
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Classroom activity: free energy of one vortex excitation

Q1 Provide an estimate of the vortex energy Evortex using this infor-
mation, the Hamiltonian (7.5) and remembering that

r' =

✓
@'

@r
,

1

r

@'

@�

◆
.

For your convenience, set the extremes of integration rmax ' Nra and rmin '
a (a lattice unit).

Q2 estimate of the entropy increase �S due to the creation of one
vortex in an otherwise uniform ground state (with '(r, �) = '0 =cst). This
can be obtained by counting (roughly!) the number of lattice sites which can
host the center of the vortex (vortex core).

Q3 Combining Evortex and �S evaluate the free-energy variation
associated with the creation of one vortex and draw your conclusions:

Q4 Is there a characteristic temperature Tc above which the
formation of one vortex is favored?




