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Figure 5.1: Left: Magnetization curve in Bohr magnetons given by the Bril-
louin function for S = 1/2, i.e. B1/2(↵), as a function of the applied field B
and di↵erent values of T indicated in the legend. Right: Energy levels of a
Zeeman Hamiltonian corresponding to a S = 1/2 and g = 2 as functions of
B.

Typically, the ground-state multiplet is separated from the first excited
one by an energy gap of the order of the intra-atomic exchange interaction
(⇠ eV). The Zeeman energy is of the order of 0.1 meV ⇠ 1 K for one-
Tesla applied field and, therefore, comparable to the thermal energy (kBT ).
These two facts imply that only the ground-state multiplet shall be populated
at realistic temperatures but the Zeeman splitting of its levels needs to be
treated in the framework of statistical physics. Choosing as a quantization
axis for the spin the direction along which the B field is applied, the Zeeman
Hamiltonian reads

HZ = g µB BŜz , (5.43)

where g is a generic Landé factor and Ŝ the e↵ective spin meant as explained
above. The corresponding partition function is given by the relation

Z =
X

M

e��EM (5.44)

where � = 1/(kBT ) and EM = g µB BM with M = �S . . . S. The partition
function is related to the free energy

F = �kBT ln (Z) (5.45)

from which the average magnetic moment per atom can be computed to
obtain

m = �@F

@B
= �gµBhŜzi = gµB S BS


gµB S B

kBT

�
, (5.46)
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with the Brillouin function

BS (↵) =
2S + 1

2S
coth

✓
2S + 1

2S
↵

◆
� 1

2S
coth

⇣ ↵

2S

⌘
and ↵ =

gµB S B

kBT
.

(5.47)
The derivation of the Brillouin function for a generic S can be found in the
literature. We do not reproduce all the passages here because it is a relatively
long calculation. Note that the Brillouin function equals the hyperbolic tan-
gent for a spin S = 1/2. Moreover, BS (↵) is only a function of the ratio
B/T and not of these two external parameters independently. Expanded for
small arguments ↵, Eq. (5.46) reduces to

m =
(gµB)2S(S + 1)

3kB T
B . (5.48)

The pre-factor of B on the right-hand side is the magnetic susceptibility of a
paramagnet, defined with SI units as � = µ0@M/@B (computed in B = 0),
and obeys the famous Curie law

� =
µ0

a3

C

T
(5.49)

with Curie constant equal to

C =
(gµB)2S(S + 1)

3kB

. (5.50)

Note that, through g and S, the Curie constant contains information about
the ground-state multiplet of individual magnetic ions in the paramagnetic
phase. For this reason the Curie constant has played an important historical
role in confirming the quantum-mechanical description of matter.

For the forthcoming discussion it is important to remark that in the
derivation of the Brillouin function BS (↵) we have implicitly used the knowl-
edge of i) the eigenstates of the atom in the presence of an external, applied
field EM and ii) the way of performing thermal averages for a quantum sys-
tem.



Appendix

Averages and thermodynamic potentials

Classical models
In the canonical ensemble, the partition function is given by

Z =
1

N !

Z
d3Nrd3Np

(2⇡~)3N
e��H({p↵,i},{r↵,i}) , (5.51)

H being the Hamiltonian of the system and � = 1/(kBT ). Z is related to a
thermodynamic potential, F , via the general relation

F = � 1

�
ln Z . (5.52)

The average of any observable O ({p↵,i}, {r↵,i}) can be computed as

hOi =
1

Z

Z
d3Nrd3Np

(2⇡~)3N
O ({p↵,i}, {r↵,i}) e��H({p↵,i},{r↵,i}) . (5.53)

Classically, the trace operator is defined as

T r =

Z
. . .

d3Nrd3Np

(2⇡~)3N
, (5.54)

which allows defining

Z = T r
�
e��H({p↵,i},{r↵,i})

 
and hOi =

1

Z T r
�
O ({p↵,i}, {r↵,i}) e��H({p↵,i},{r↵,i})

 
.

(5.55)

Quantum models

Assume that | ↵i be a complete basis of the Hilbert space on which the
Hamiltonian of the model is defined. Quantum-mechanically, the trace is
then given by

T r =
X

↵

h ↵| . . . | ↵i . (5.56)

86



CHAPTER 5. THERMODYNAMICS AND STATISTICAL MECHANICS87

By analogy with (5.55), the partition function and thermal averages are
accordingly defined

Z = T r
�
e��H =

X

↵

h ↵|e��H| ↵i

hOi =
1

Z T r
�
Oe��H =

1

Z
X

↵

h ↵|Oe��H| ↵i .
(5.57)

In few advanced computations one stops at this level. Generally, the trace is
evaluated on a complete basis of eigenstates of H:

H|'ii = Ei|'ii . (5.58)

The computation of (5.57) is, consequently, simplified:

Z =
X

i

h'i|e��H|'ii =
X

i

e��Ei

hOi =
1

Z T r
�
Oe��H =

1

Z
X

i

h'i|O|'iie��Ei
.

(5.59)

Spin models

Limiting ourselves to a Hamiltonian of the type

H = �1

2
J
X

|n�n0|

= Ŝ(n) · Ŝ(n0) + gµBBext
X

n

Ŝz(n) (5.60)

one possible choice for the basis of the Hilbert space is the following one:
| ↵i=|M1, M2, . . . MNi=|M1i ⌦ |M2i · · · ⌦ |MNi with Ŝz(n)|Mni=Mn|Mni
and n label for the lattice site. Note that the Hamiltonian in Eq. (5.60) is
not diagonal on this basis. After having diagonalized it, thermal averages
can be computed according to Eqs. (5.59).
For many problems in magnetism, substituting the quantum-mechanical op-
erators Ŝ(n) by classical vectors is legitimate:

Ŝ(n) ! ~S(n) ⌘ S0 (sin ✓ cos', sin ✓ sin', cos ✓) (5.61)

where S2

0
= S (S +1) (more often S0 = 1). The partition function then reads

Z =

Z
d⌦1

Z
d⌦2· · ·

Z
d⌦Ne��H({~S(n)}) , (5.62)

with d⌦n = sin ✓nd✓nd'n being the solid-angle element of the spin located at
the site n.



Chapter 6

Magnetic order at finite
temperature

Lecture: 21.11.2022

Spin Hamiltonian as quantum N-body problem

While the intra-atomic exchange energy is of the order of 4 � 10 eV⇠ 105

Kelvin, the inter-atomic exchange interaction is about 10 � 50 meV ⇠
100 � 500 Kelvin. Thus, depending on the material and the temperature
range of interest, a statistical-mechanic treatment is also required to study
the cooperative e↵ects arising from this type of coupling between di↵erent
magnetic moments in a solid. The competition between this inter-atomic
exchange interaction and thermal fluctuations is indeed responsible for the
loss of ferromagnetism above a certain temperature, called Curie tempera-
ture Tc. Table 6.1 reports the values of that critical temperature for few
selected magnetic materials.

Restricting ourselves to ferromagnetic inter-atomic exchange interactions,
a system of coupled magnetic moments arranged in a lattice can be described

Typical transition temperatures of some ferromagnets

Fe Co Ni Fe3O4 Nd2Fe14 B Gd Dy EuO EuS
Tc[K] 1043 1388 627 858 593 292 88 69 16.5

Table 6.1: Some typical values of the Curie temperature Tc for few selected
ferromagnets (more values can be found in Wikipedia).

90



CHAPTER 6. MAGNETIC ORDER AT FINITE TEMPERATURE 91

by the Hamiltonian

H = �1

2
J

X

|n�n0|=1

Ŝ(n) · Ŝ(n0) + gµBB
X

n

Ŝz(n) . (6.1)

The dimension of the Hilbert space associated with this quantum many-body
problem scales as (2S + 1)N , N being the number of magnetic moments
(spins) in the lattice. Due to such an exponential dependence on N , the
exact treatment of a system of many coupled spins becomes intractable –
even numerically – as far as the number of spins approaches that of realistic
extended systems1. In practice, one can try to circumvent this problem in
several ways:

1. Reduce the many-body problem to a single-particle problem. This
corresponds to the mean-field approximation (MFA).

2. Simplify the problem replacing the quantum-spin operators by classical
vectors.

3. Take advantage of specific symmetries in the problem under investiga-
tion and use a Hamiltonian which can easily be diagonalized.

4. Consider only a selected family of excitations of the ground state, which
can have either local (domain walls) or non-local (spin waves) character.

Non-analyticity in the magnetization curve

The goal of this chapter is to define the conditions for the persistence of
ferromagnetism at finite temperatures in the framework of equilibrium ther-
modynamics. In other words, we will assume that the considered ensembles

of interacting magnetic moments have had enough time to equilibrate, i.e.,
to populate di↵erent configurations according to the Boltzmann distribution.
Before entering the details of specific models, it is useful to provide an op-
erative definition of ferromagnetism itself. To this aim, we start from the
paramagnetic response of a spin 1/2 given by the corresponding Brillouin
function

m = gµB

1

2
B1/2


gµB B

2kBT

�
= gµB

1

2
tanh


gµB B

2kBT

�
. (6.2)

1
Some e↵ective zero-dimensional structures (magnetic clusters or nanoparticles) are also

studied in the context of nanomagnetism. For some of these systems, exact diagonalization

of the associated quantum problem is still feasible numerically and makes it possible to

describe their magnetic behavior at any temperature.
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energy is replaced by the free energy: A system is ferromagnetic if the spon-

taneous magnetization

lim
B!0+

m(B, T ) = � 1

N
lim

B!0+

@F

@B
(6.6)

is di↵erent from zero (with the free energy F defined in Eq. (5.45)). We
remark that one speaks of ferromagnetism when a sample remains magnetic
in the absence of field, that is the reason why the limit for B ! 0± matters.
The existence of atomic magnetic moments warrant only paramagnetism but
– as we will see – not necessarily ferromagnetism at finite temperature. Based
on the time-reversal symmetry of spin Hamiltonians in the absence of field
(B = 0) it can be argued that the limit (6.6) can only be finite if the mag-
netization is discontinuous in B = 0, i.e., if the derivative @m/@B is not
analytic. Yet, in equilibrium thermodynamics the magnetization is expected
to be an analytic function for any finite system. In fact, through Eq. (5.45),
the magnetization is related to the first derivative of the partition function

Z =
X

n

e��En , (6.7)

n labeling the states of the system and En being the corresponding energies.
Since for a finite system n is finite, Z is a finite sum of analytic functions,
which has to be analytic. This argument rules out the possibility of hav-
ing spontaneous magnetization at finite temperature for any finite system2.
However, formally speaking, an infinite sum of analytic functions can be non-
analytic. Think, for instance, of the Fourier series of a square or a saw-tooth
wave. Therefore, the thermodynamic limit N ! 1 practically underlines
any theoretical description of ferromagnetism at finite temperature as an
equilibrium phenomenon, namely as resulting from a thermodynamic phase
transition. The concept of bistability is indeed broader than this definition of
ferromagnetism because it includes the possibility of a sample being magnetic
as a result of metastability, that is an out-of-equilibrium situation3.

2
Note that this statement does not contradict what discussed previously for the ground-

state magnetization because in the limit of T ! 0 the exponential functions appearing in

Eq. (6.7) are not analytic either.
3
Roughly speaking, when we use Boltzmann statistic we assume thermodynamic equi-

librium, namely we assume that the system under investigation had enough time to visit

all its statistically relevant states.
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6.1 The Ising model

When consistent with the symmetry of the problem, two-value classical spins,
Sz = ±1, can be assumed:

H = �1

2
J

X

|n�n0|=1

Sz(n) Sz(n0) + gµBB
X

n

Sz(n) . (6.8)

This approximation is obviously justified in the limit in which the anisotropy
D is significantly larger than other energies at play (J , kBT , etc.). Another
instance is realized when the full degeneracy of the total angular momen-
tum of unpaired electrons of a magnetic atom in the gas phase (spherically
symmetric environment, Hund’s rules) is reduced to the minimal two-fold
degeneracy for B = 0 in the solid phase (Kramers doublet). In this case,
magnetism can be described with an e↵ective spin one-half. Beside its appli-
cation to magnetism, the Ising Hamiltonian (6.8) is used in many di↵erent
contexts, ranging from biophysics to social sciences.

Mean-field approximation

Assuming that the reader has encountered the mean-field approximation
(MFA) in di↵erent courses, we refresh here only the aspects that are relevant
to our discussion on ferromagnetism at finite T . The MFA is a simplified
treatment of a many-body problem, which consists in replacing the original
problem with its best single-particle counterpart. For magnetic systems, the
reference single-particle problem is the paramagnet, which can be regarded as
the equivalent of the ”ideal gas” in the study of statistical thermodynamics.
In formula, the MFA of Hamiltonian (6.8) reads

H = �1

2
J

X

|n�n0|=1

Sz(n) Sz(n0) + gµBB
X

n

Sz(n) ' gµBBe↵
X

n

Sz(n) (6.9)

where the e↵ective (Weiss) field Be↵ depends parametrically on the single-
particle averages of the z spin projection

sav = hSz(n)i . (6.10)

Setting equal to zero terms like

[sav � Sz(n)] [sav � Sz(n0)] = 0 , (6.11)

technically called fluctuations, makes it possible to rewrite Hamiltonian (6.8)
as the Hamiltonian of a paramagnet (with two energy levels, for the Ising
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model). In fact, in this way, the product of pairspins can be expressed in
terms of the average sav and single-particle contributions

Sz(n)Sz(n0) = �s2

av
+ [Sz(n) + Sz(n0)] sav . (6.12)

Within the MFA the spontaneous magnetization behaves as follows

lim
B!0+

m(B, T ) 6= 0 for T < Tc

lim
B!0+

m(B, T ) = 0 for T > Tc

(6.13)

where the critical temperature is defined as kBTc = znJ , with zn number of
nearest neighbors of each spin. Below T > Tc, the spontaneous magnetization
is predicted to behave critically

m(T, 0) ⇠ (Tc � T )
1
2 . (6.14)

In summary, the MFA predicts the occurrence of a phase with spontaneous
magnetization at finite temperature, which is realized below a material-
dependent Tc. In the following we will discuss some limitations of this
approach that are mainly rooted in the crudeness of the approximation in
Eq. (6.11).

1D Ising model

Probably one of the most striking failure of MFA is the prediction of a mag-
netically ordered phase below Tc for one-dimensional (1D) systems. In fact,
the result in Eq. (6.13) is independent of the magnetic-lattice dimension-
ality. The latter corresponds to the number of directions along which the
exchange coupling propagates indefinitely. In practice, this dimension may
also be di↵erent from the actual dimensionality of the considered solid, like in
molecular spin chains. A well-known result of Statistical Physics is that sys-
tems whose magnetic lattice has a dimensionality is smaller than 2D cannot
sustain spontaneous magnetization at thermodynamic equilibrium4.

Landau argument

Here we provide a heuristic argument presented in the Landau-Lifshitz series
that applies to the 1D Ising model and more generally to spin chains with
uniaxial anisotropy. We evaluate the variation of the free energy associated
with the creation of a domain wall (DW) in a configuration with all the spins
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1

E1, S1

2

E2, S2

DW

Figure 6.1: Sketch representing the configurations whose free-energy di↵er-
ence is evaluated in the text: 1) ferromagnetic ground state with all the spins
parallel to each other (top) and 2) a configuration consisting of two domains
with opposite spin alignment (bottom) and one domain wall (DW).

parallel to each other. Creating a DW in a spin chain where all the spins
point along the same direction increases the energy by a factor E2�E1 = 2J .
This DW may occupy N di↵erent positions in the spin chain, so that this set
of configurations has an entropy of the order of S2 ' kB ln(N). The entropy
of the ground state vanishes if we assume that the two spins at the bound-
aries have been forced to point upward (otherwise one has S1 = kB ln(2)).
Therefore, the free-energy di↵erence between the two configurations sketched
in Fig. 6.1 is roughly given by

�F ' 2J � kBT ln(N) . (6.15)

The qualitative behavior of �F is sketched in Fig. 6.2. A characteristic
temperature-dependent threshold N̄ can be defined such that for N > N̄
the free energy di↵erence �F is negative and therefore DWs start forming
spontaneously in the chain. The threshold N̄ is obtained by requiring �F =
0, which gives

N̄ ' exp (2�J) . (6.16)

Practically, when N̄ is larger than the number of spins5 in the chain N (low
temperature), the ground-state configurations with all spins aligned are also
minima of the free energy, since �F > 0. In this case, as far as equilibrium
properties are concerned, the behavior of the spin chain is reminiscent to
that of a two-level paramagnet with magnetic moment µ = NgSµB. When

4
The absence of a magnetically ordered phase at finite temperature is true in general

for 1D systems provided that the coupling between spins is short-ranged enough.
5
In molecular spin chains N̄ should be compared with the average number of sites

separating two successive defects.
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finite-size regime 1-chain regime

NN̄ ⇠ ⇠
•

�F

Figure 6.2: Qualitative behavior of the free energy �F = 2J �kBT ln(N/w)
as a function of N (see the main text).

N̄ < N (high temperature), instead, the ground-state configurations with all
spins aligned do not minimize the free energy and DWs are always present in
the system at equilibrium. In the limit of an infinite chain, the same argument
can be repeated to justify the presence of an indefinite number of DWs. We
refer to this condition – realized in spin chains at higher temperatures – as
the thermodynamic limit in which the inverse of N̄ is proportional to the
average density of DWs.

Correlation length

In 1D magnetic systems the averaged pair-spin correlation decays exponen-
tially with the separation between spins. Focusing on the Ising model, in
which only the spin component along z is defined, one has

hSz
i S

z
i+ri = e�r/⇠ . (6.17)

The characteristic scale of this decay defines the correlation length ⇠. It can
be shown that ⇠ is related to the susceptibility measured along the easy axis
in zero field by the general equation

� = 2
C

kBT
⇠ , (6.18)

where C is the Curie constant characterizing the magnetic centers coupled
to form the chain. Apart from proportionality factors, N̄ defined above and
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indicated with a dot in Fig. 6.2 can be identified with the correlation length
⇠. Thus, similarly to N̄ , one expects a leading dependence of the Arrhenius
type for the correlation length as well:

⇠ ⇠ exp (2�J) . (6.19)

For a finite chain with N < N̄ (see Fig. 6.2) the role of the correlation
length in the susceptibility is – roughly speaking – replaced by the chain size
N .


