















































































































































































































































































































































































































CHAPTER 3. ITINERANT MAGNETISM 63

DOS(E) and any given energy range gives the number of levels in that range;
thus DOS(E)dE is the number of levels lying between the energies E and
E + dE, and 1/DOS(E) is the average energy separation of adjacent levels
in that range. The DOS as a function of energy, shown in figure 3.2.b for
manganese, can be obtained from the band structure in momentum space.
As a rule of thumb, a peaked density of state (flat band) corresponds to a
more localized character of the electron, while a smeared out density of state
(parabolic band) corresponds to electrons with more itinerant character.

Stoner criterion

Let us go back to the explanation of metallic ferromagnetism. We sketch
in the following the main ideas behind the Stoner-Wohlfarth-Slater model,
which is an extension of band theory to include the e↵ect of an intra-atomic
exchange interaction. These two ingredients allow establishing a condition
for the existence of an imbalance between majority and minority spins in
itinerant electrons. Defining the polarization P with respect to some spin
quantization axis3 as the di↵erence between the number of majority- and
minority-spin electrons P = Nmaj

� Nmin, one can express the exchange
contribution to the electron-gas energy as

Eexch = �JintraP . (3.1)

In the equation above Jintra can be identified with the intra-atomic exchange
interaction responsible for the first Hund’s rule in atoms. Let D0(E) be the
density of states per atom common to both spin channels in the absence of
spin imbalance. Then we apply an opposite shift to the energy of electrons
with majority and minority spin to account for the exchange energy given in
Eq. (3.1) (see Fig. 3.3):

Dmaj(E) = D0

✓
E +

1

2
JintraP

◆

Dmin(E) = D0

✓
E �

1

2
JintraP

◆
.

At this point the problem is defined by the following pair of equations

N =

Z EF (P )

0


D0

✓
E +

1

2
JintraP

◆
+ D0

✓
E �

1

2
JintraP

◆�
dE

P =

Z EF (P )

0


D0

✓
E +

1

2
JintraP

◆
� D0

✓
E �

1

2
JintraP

◆�
dE ,

(3.2)

3
To help visualization the spin quantization direction has been defined in Fig. 3.3 along

the direction of an external magnetic field.
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5.2 Stochastic Landau-Lifshitz-Gilbert equation

H(✓)

kB T

✓1 ✓2 ⇡ x y

~B

z

~J✓

Figure 5.3: Left: qualitative energy landscape H(✓) = �D cos
2 ✓ + gµBB cos ✓.

Indicatively, domains that are significantly populated in the high-energy barrier

limit are defined by thermal energy kBT : �1 � [0, ✓1] and �2 � [✓2, ⇡]. Right: the

two domains �1 and �2 are sketched on the unitary sphere with the corresponding

current density ~J�.

in the next section[137]. With respect to algorithms based on Langevin dynamics

this second approach appears to be numerically more stable, even though it does

not provide a significant reduction in computational time.

Fokker-Planck equation

A basics passage to implement a time-quantified Monte-Carlo algorithm for a

system of classical Heisenberg spins is the mapping of the stochastic LLG equa-

tion (5.22) into a Fokker-Planck equation. This calculation was originally per-

formed by W. F. Brown Jr. to derive – among the other results – the celebrated

Néel-Brown law for the relaxation rate of a superparamagnetic nonoparticle. Be-

low we provide an idea of the underlying fromalism and recall the central results

of Brown’s calculation.

Let ~S be the total spin of a nanoparticle, within the macrospin approxima-

tion. Referring to Fig. 5.3, a point (✓, ') on the unitary sphere identifies the

instantaneous direction along which ~S is pointing. In a statistical sense, a sur-

face density W (✓, ', t) can be defined, which represents the probability that the

208

reference 
field

Figure 3.3: Pictorial representation of the Stoner-Wohlfarth-Slater model in
terms of the density of states (DOS) of d electrons. The red-shadowed area
indicates filled electron states below the Fermi energy EF , while empty states
above EF are shown without shadowing. The spin states with the largest
number of electrons are called “majority spins” and the corresponding band
is the “majority band”; the term “minority” is used for the other electron
spins and band. The centers of the majority and minority d bands, assumed
to be reasonably localized, are separated by the splitting produced by the
intra-atomic exchange interaction Jintra. Since the labels “spin-up” and “spin-
down” are only meaningful in conjunction with a quantization direction, an
external field defines this quantization axis.
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in which the unknowns are the spin polarization P and the Fermi energy
EF (P ). We will come back to the dependence of EF on P later on. Practi-
cally, the core levels are not relevant in this problem because the electrons
occupying those levels are all paired in spin singlets and, thus, do not con-
tribute to the spin imbalance. Therefore, N = Nmaj +Nmin can be identified
with the number of electrons in the outer shell of a magnetic atom. Ideally,
one can imagine solving the first equation to obtain EF (P ) and insert this
quantity in the second one. In this way, one would end up dealing with a
self-consistent equation for the unknown P qualitatively similar to the equa-
tion of state of a ferromagnet obtained with the mean-field approximation:
P = F (P ). The function F (P ) has the following important properties:

1. F (0) = 0

2. F (�P ) = �F (P ) , i.e. EF (�P ) = EF (P )

3. F (±1) = ±PHund and �PHund < F (P ) < +PHund

4. F 0(0) = (dF/dP )P=0
� 0 .

PHund is the largest attainable polarization of the electron gas and corre-
sponds to the magnetic moment obtained applying the first Hund’s rule to
the considered metal4. Under these conditions, the graphical solution of the
implicit equation for P evidences two possible scenarios. For F 0(0) < 1, the
equation P = F (P ) has only the solution P = 0 (curve a in Fig. 3.4). For
F 0(0) > 1, the equation has three solutions: P = 0 and two solutions with
finite P of opposite sign (marked with open circles on the curves b and c in
Fig. 3.4). The last ones generally provide non-integer values of P . In this
case it can be shown that the P = 0 solution maximizes the total energy,
while the two solutions with opposite sign are the minima of the energy as-
sociated with a finite spin imbalance in the ground state. In particular, the
atomic magnetic moment is related to the spin imbalance by the equation

µ =
1

2
gµBP , (3.3)

where P is a solution of the equation P = F (P ). Various solutions of this
equation are qualitatively summarized in Fig. 3.4, where they are indicated
with P̄ to help distinguish between di↵erent cases. A finite polarization is

4
To be precise, by PHund we mean the polarization that the atom in a solid would have

without taking into account the itinerant character of conduction electrons. Therefore,

PHund shall generally be smaller than the free-ion value because of the quenching of the

orbital momentum operated by the crystal field.
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Latex expression in the file Table_Stoner-Wohlfarth 

Graphical solution of the equation   P = F (P )

•
�PHund

•
PHund

•
�PHund

•
PHund

a

�
b

�

�

c

�

a.

✓
dF

dP

◆

P=0

< Jintra D0(EF ) ) P̄ = 0

b.

✓
dF

dP

◆

P=0

> Jintra D0(EF ) ) 0̄ < P̄ < PHund

c.

✓
dF

dP

◆

P=0

> Jintra D0(EF ) ) P̄ � PHund

P

y

a.

✓
dF

dP

◆

P=0

= Jintra D0(EF ) < 1 ) P̄ = 0

b.

✓
dF

dP

◆

P=0

= Jintra D0(EF ) > 1 ) 0 < P̄ < PHund

c.

✓
dF

dP

◆

P=0

= Jintra D0(EF ) > 1 ) P̄ � PHund

Figure 3.4: The dashed straight line indicates the bisectrix y = P . Solid
lines indicate representative functions y = F (P ) obtained (qualitatively)
for di↵erent values of Jintra D0(EF ), which define the slope of the curves
y = F (P ) at the origin (see Eq. (3.4)). Intersections of the straight line and
the curves give the solutions to the equation P = F (P ) – here indicated
with P̄ . Non-trivial solutions are marked with open circles. The red curve
labeled with a does not fulfill the Stoner criterion in Eq. (3.5), therefore the
only trivial solution P̄ = 0 is obtained. The other two curves labeled with
b and c fulfill the criterion. The green curve (b) corresponds to a smaller
value of Jintra D0(EF ), which yields an absolute value of the polarization P̄
significantly smaller than the maximal value PHund (marked with full dots on
the axes). The blue curve (c) corresponds to a larger value of Jintra D0(EF )
for which the absolute value of the polarization P̄ approaches PHund.
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conduction electrons (note the similarity with the assumption made in the
calculation to estimate the magnetic anisotropy of Mn3+). Under this hy-
pothesis, the magnetic response of the conduction-electron gas is just the
response to a �-like excitation, which in the framework of magnetism is de-
scribed by the susceptibility dependent on the wave vector �(q):

ŝi(r) / Jintra Ŝl

Z
�(q) e�iq·r ddq . (3.8)

The equation above relates the spatial dependence of the spin polarization
of the electron gas surrounding a magnetic atom (“impurity”) to the suscep-
tibility �(q) of the gas itself. In order to provide an explicit dependence of
ŝi on r, one needs to know the expression of the susceptibility. Apart from
constant prefactors – in which we are not interested – this is given by

�(q) /
1

2
+

kF

2q

✓
1 �

q2

4k2

F

◆
ln

����
2kF + q

2kF � q

���� , (3.9)

where kF is the Fermi wave vector. Using a mathematical equivalence6, from
Eq. (3.9) one obtains that

Z
�(q) e�iq·r ddq /

sin(2kF r) � 2kF r cos(2kF r)

(kF r)4
. (3.11)

Combined with Eq. (3.8), the last expression tells us that when a localized
magnetic moment is introduced into a metal, the spins of conduction electrons
develop an oscillating polarization in the vicinity of the local moment7. The
polarized conduction electrons, in turn, shall produce an e↵ective field on
the magnetic moment localized at another lattice site, by virtue of Eq. (3.6)
itself. This eventually leads to an e↵ective exchange coupling between the
spins Ŝl1 and Ŝl2 associated with two localized magnetic moments in the
metal

HRKKY = �JRKKY Ŝl1 · Ŝl2 (3.12)

with

JRKKY = J0

2kF R cos(2kF R) � sin(2kF R)

(kF R)4
. (3.13)

6
The equivalence of interest is

ln

����
2kF + q

2kF � q

���� = 2

Z 1

0

sin(2kF x) sin(qx)

x
dx . (3.10)

7
These spin-density oscillations have the same form as the Friedel charge-density oscil-

lations that result when an electron gas screens out a charge impurity.




