31.10.2022

M-Dh symmetry

1st Hond - like behavior

 e_{5} $+ + +$ t_{23} + $p = 0^2$ Pauli pr. like

Single-ion spin Hamiltonian Inter-atomic exchange coupling
In all these cases the originality between the orbitals is symmetry determined the orbitals is symmetry determ Exchange coupling in transition-metal oxides coupling. Exertaing coupling in transition metal oxides

Super exchange between Cu^{2+} and Cu^{2+} er exchange between $Cu²⁺$ and $Cu²⁺$

antiferromagnetic coupling

, 1, Cu2+–Cu2+ , 2, andMn3+–Mn3+ , 3.

 $2Q$

Single-ion spin Hamiltonian Inter-atomic exchange coupling Exchange coupling in transition-metal oxides couple Hamilton In all these cases the orthogonality between the orbitals is symmetry determined the orbitals is symmetry determined by \mathbb{R}^n \blacksquare ion-metal \blacksquare oxides \blacksquare

Super exchange between Cu^{2+} and V^{4+} \sim 2.8. The magnetic orbitals of the two copyrights of the two co veen Cu^{2+} and V^{4+}

ferromagnetic coupling

 $\mathcal{A} \square + \mathcal{A} \overline{\square} + \mathcal$

 $2Q$

Single-ion spin Hamiltonian Inter-atomic exchange coupling ing in transition-metal oxides in the soupling orthogonality by acceptance or to realize orthogonality by accept
It is possible, however, to realize orthogonality by acceptance of the sound of the sound of the sound of the

, $\frac{1}{2}$

and antiferromagnetic coupling, but when the O–Cu–O angle is close to 96 the O–Cu–O angle is close to 96 the O–Cu–O

Fig. 2.8. Magnetic orbitals in Cu2+–VO2+

Super exchange between Mn^{3+} and Mn^{3+} is shown in 2 of Fig. 2.8. The magnetic orbitals of the two copper ions can be **Considerally a good assets in an approximation in Super exchange between Mn³⁺ and M**

ferromagnetic coupling

, 2, andMn3+–Mn3+

, 3.

 $2Q$

Single-ion spin Hamiltonian Inter-atomic exchange coupling Exchange coupling in transition-metal oxides

Double exchange Mn^{3+} and Mn^{4+} mediated by the electron-transfer

double exchange

◀ ㅁ ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로

 OQ

 k_F^{HS} k_F^{LS}

 $High$ DOS flat bound

Low DOJ parcholic band

Workshopp assignment
\n(on the blackband.)
\nRing with N=3 spins
$$
\frac{1}{2}
$$

\n $H = -J(\hat{S}_1 \cdot \hat{S}_2 + \hat{S}_2 \cdot \hat{S}_3 + \hat{S}_3 \cdot \hat{S}_1)$
\n $\frac{2}{3}$
\n $\frac{3}{12}$
\n $\frac{2}{3}$
\n $\frac{3}{12}$
\n $\frac{2}{3}$
\n $\frac{3}{12}$
\

 $|S_{13}, S_{123} \rangle$ states. Table:

 ζ_{n}

Today we want to express the sycrators $\mathcal{H}, \mathcal{S}_{123}$, and \mathcal{T} [tromsation] on the Single perticle basis and progessively build (nunverically) a basis of common eigenst

The fact that a basis of common eig.
\nCom 3 is guaranteed by
\n
$$
[34,3^2 3=(34,7) = [7,3^2] = 0
$$
\n\nstate of single particle basis can be analyzed
\ninto integer numbers
\n
$$
= \begin{pmatrix} 1000 \\ 6001 \\ 1111 \end{pmatrix} = 17,3^2 = 0
$$
\n
$$
= \begin{pmatrix} 1000 \\ 6001 \\ 1111 \end{pmatrix} = -3
$$
\n
$$
= \begin{pmatrix} 1100 \\ 1111 \end{pmatrix} = 1 - 3
$$
\n
$$
= \begin{pmatrix} 1100 \\ 1111 \end{pmatrix} = 1 - 3
$$
\n
$$
= \begin{pmatrix} 1100 \\ 1111 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1 + 3
$$
\n
$$
= \begin{pmatrix} 2 & 1 & 1 \\
$$

N.B. Each block is characterized by the same eigen. Ex

4 How do we coeate states on which Hand \hat{S}^2 are simultaneously diagonal? A we need to diag. S² on the blocks
characterized by the same eigenvalue F_{α} .
Concretely for this problem one has Adung these $E_{\alpha} = -\frac{3}{4}$ $d = 1, 2, 3, 4$ are not the Single particle $\alpha = 5, 6, 7, 8$ $E_{\alpha} = \frac{3}{4}$ States even if they are enunirated with integers After having performed this additional
Idock diagonalization we create the sinuitancos $H \left| E_{\alpha}, \alpha; M, \mu \right> = E_{\alpha} | E_{\alpha}, \alpha; M, \mu \right>$ $\mathbb{S}_{7}^{2} | E_{\alpha_{1}\alpha_{j}} M_{\gamma}M_{0}>=M | E_{\alpha_{1}\alpha_{j}} M_{\gamma}M_{0}M_{0}$ Hi and \bar{c}^2 are diagonal on this basis by constution I is, however, not completely diagonal yet: it mixes up states associated with $E = \frac{3}{4}$ & M=/2 The corresponding motrix receds $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ with $a = -0.5$ $b = -0.86603...$

 \geq

with this knowledge we should be able to
identity unitically each basis states
by defining the values of
$$
E, M, F
$$

From the knowledge of the eigenvectors

$$
\begin{pmatrix} a & b \\ c & b \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} a+i6 \\ -b+i \end{pmatrix} = (a+i) \begin{pmatrix} 1 \\ i \end{pmatrix}
$$

$$
\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} a-i b \\ -b+i \end{pmatrix} = (a-i) \begin{pmatrix} 1 \\ -i \end{pmatrix}
$$

One ∞ [d, in principle, build the set of
eigenstates on which $W = \begin{pmatrix} 2 & f \\ -f & f \end{pmatrix} = 3$
divegened $\in g$.
 $E = 3/4$ | $|E, M, k \rangle = \begin{pmatrix} \frac{11}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix}$

$$
M = \frac{V_2}{3}
$$

\n $k = \frac{2\pi}{3}$
\n $l_{\alpha st} = 2$ eigenvectors of the basis set
\n $l_{\alpha} = \frac{1}{2} \pi$

Using similar arguments are contreat the ring with
N=4 spins 1/2. In this case the energy eigenstates are those computed in the last assignment, possible values of $M = \pm 2, \pm 1, 0$ and those of $k = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$.