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Why is the strength of SO coupling indicated as < 1 meV for TM
if ⇣nl = 10 � 100 meV?

Alessandro Vindigni, ETH Zürich Exchange coupling in transition-metal oxides
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232 7 Electronic and Magnetic Interactions in Solids
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Fig. 7.5. The approximate size of three important interactions in solids for the 3dn

shell in transition metal ions and the 4fn shell in rare earth ions, illustrated by the
observed splittings in spectra of the ions in crystals [140, 235]. Note the opposite
relative size of the bonding and the spin–orbit splittings for the 3d and 4f systems.
We also indicate the size of noncharge conserving excitations, n � n ± 1, leading to
excited configurations where electrons have been removed or added, as measured in
photoemission and inverse photoemission

either an intraconfiguration excitation that preserves the charge state of the
bonded ion, or by an extraconfigurational excitation that changes the charge
state by adding or removing an electron from an atom in the sample. We have
already encountered an excitation of the latter kind in the discussion of the
Hubbard model, where an electron may hop on or o� an atom, and from this it
is evident that the Hubbard U must be associated with an extraconfigurational
excitation. We shall later see that in the modern classification of correlated
materials another energy is of great importance. This so-called charge transfer
energy actually corresponds to an intraconfiguration excitation.

Let us now take a look at the relative size of interactions within the elec-
tronic ground state configuration. As discussed in Chap. 6 the Coulomb and
exchange interaction leads to the coupling of the spins and angular momenta
of the individual n electrons in the d or f shell to terms 2S+1L. For both the
3d and 4f ions the size of the intra-atomic coupling is given by the separation
between the terms and we have indicated an order of magnitude estimate in
Fig. 7.5.

Knowing that in Fe3+  Oh complexes

26 MAGNETIC INTERACTIONS IN MOLECULAR SYSTEMS

very intuitive approach for the case of one ligand on the z axis. Its e�ect is to
give the following energies for the d orbitals:

E(z2) = e�; E(xz) = E(yz) = e�; E(xy) = E(x2
� y2) = e� (2.34)

where e� is usually taken as zero. The energies for the case of more ligands can
be additively calculated by taking into account the required coordinate rotations
through the so-called angular overlap matrix.

The ground states for octahedral transition metal ions can easily be determ-
ined by an aufbau approach to the various dn configurations. They are shown
in Fig. 2.3. It is seen that for the d1, d2, d3, d8, d9 configurations there is only
one way of putting the electrons in the two sets of levels. For the d4 to d7 con-
figurations, depending on the energy separation between the two sets of levels,
the electrons may prefer to occupy the d orbitals with their spin parallel, giving
rise to high spin configurations, or to pair in the lowest-lying t2g orbitals, giving
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Fig. 2.3. Electronic configurations of dn octahedral complexes. The number of d
electrons increases from left to right and from up to down.
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CF frustrated Hund frustrated

What happens here?

Based on this susceptibility plot, try to give a rough 
estimate of the energy difference between the two multi-
electron configurations sketched above on the left

Alessandro Vindigni, ETH Zürich Crystal field and spin orbit







CHAPTER 2. TRANSITION-METAL AND RARE-EARTH IONS IN SOLIDS41

contributions to its Hamiltonian:

H = H0 + Hee + Hcf + Hso + HZ . (2.19)

We express the orbital part of the wave function on the symmetry-adapted
basis |�, �i, on which the leading free-ion contribution H0 and the crystal-
field Hamiltonian Hcf are simultaneously diagonal. Concretely, the nota-
tion |�, �i represents multi-electron configurations like those sketched in
Fig. (2.4), including excited states. We would like to treat the spin-orbit
and the Zeeman interactions,

Hso = � Ŝ · L̂

HZ = µB

⇣
L̂+ gs Ŝ

⌘
· ~B ,

(2.20)

as perturbations and project out the dependence on the orbital coordinates.
The final goal is to obtain an e↵ective Hamiltoninan that retains only the
dependence on spin coordinates. For simplicity, we focus ourselves on an
orbitally non-degenerate ground state defined by the multiplet |�, �, S,Msi =
|�, �i ⌦ |S,Msi. The spin part of the Zeeman interaction acts only on spin
coordinates and is not a↵ected by the integration over orbital coordinates;
therefore, we shall write it as it appears in the second line (HZ) of Eq. (2.20).
The remaining parts of the Hamiltonians (2.20) depend on L̂ and do not
give any correction to the energy of the ground-state to the first order of
perturbation theory in the absence of orbital degeneracy (as assumed). To
the second order of perturbation theory, instead, one has

He↵ = gsµB Ŝ · ~B �

X

�0,�0

|h�0, �0
|µB L̂ · ~B + � Ŝ · L̂|�, �i|

2

E�0,�0 � E�,�
, (2.21)

where the sum runs – in principle – over all the excited states |�0, �0
i with

energy E�0,�0 > E�,�. The square in Eq. (2.21) can be expanded to yield

He↵ = gsµB Ŝ · ~B � 2µB �
X

↵,⌫

⇤↵⌫B
↵Ŝ⌫

� �2
X

↵,⌫

⇤↵⌫Ŝ
↵Ŝ⌫

� µ2

B

X

↵,⌫

⇤↵⌫B
↵B⌫

(2.22)

with

⇤↵⌫ =
X

�0,�0

h�, �|L̂↵
|�0, �0

ih�0, �0
|L̂⌫

|�, �i

E�0,�0 � E�,�
. (2.23)



5. Treating the spin-orbit interaction at the second order of perturbation
theory, the following e↵ective spin Hamiltonian can be defined

He↵ = µB

X

↵,⌫

g↵⌫B
↵
Ŝ

⌫
�

X

↵,⌫

D↵⌫ Ŝ
↵
Ŝ

⌫ (1)

where
g↵⌫ = gs�↵⌫ � 2�⇤↵⌫ and D↵⌫ = �

2⇤↵⌫ (2)

are the g-tensor (or Landé tensor) and the magnetic-anisotropy tensor.
Within the subspace S = 2 the only non-zero matrix elements are

⇤xx =
|hdyz|L̂

x
|dx2�y2i|

2

�E(dyz ! dx2�y2)

⇤yy =
|hdxz|L̂

y
|dx2�y2i|

2

�E(dxz ! dx2�y2)

⇤zz =
|hdxy|L̂

z
|dx2�y2i|

2

�E(dxy ! dx2�y2)
,

(3)

with

|hdyz|L̂
x
|dx2�y2i|

2 = 1

|hdxz|L̂
y
|dx2�y2i|

2 = 1

|hdxy|L̂
z
|dx2�y2i|

2 = 4

(4)

associated with the transitions sketched in the Figure. Assuming the val-
ues �E(dxy ! dx2�y2) = 18000 cm�1, �E(dxz ! dx2�y2) = �E(dyz !

dx2�y2) = 21000 cm�1 and the spin-orbit coupling constant is � = 90
cm�1, determine the components of the g-tensor gxx = gyy and gzz; com-
pute the value of the uniaxial anisotropy parameter D = Dzz � Dxx.

dx2�y2

dz2

dxy

dxz dyz

dxy ! dx2�y2dxz ! dx2�y2 dyz ! dx2�y2

a

ground state

b c d

a b c d

1

a b c d

1

abcd

1

2





Heitler-London (HL) model 1

The Hamiltonian: HH2 = Ha + Hb + Hee + HNN + H1b + H2a

The HL trial wave functions are

 
T

(r
1
, r

2
) =

1
p

2(1 � S2)
[ 1s(r1a) 1s(r2b) �  1s(r1b) 1s(r2a)]

 
S
(r

1
, r

2
) =

1
p

2(1 + S2)
[ 1s(r1a) 1s(r2b) +  1s(r1b) 1s(r2a)]

where S is the overlap integral

S = h 1s(r1a)| 1s(r1b)i = h 1s(r2b)| 1s(r2a)i =

Z
 1s(r1a) 1s(r1b) d

3r1

The expectation value of the Hamiltonian HH2 evaluated on the trial wave functions is

ET
= h 

T
|HH2 | 

T
i = 2E1s +

Q � X

1 � S2

ES
= h 

S
|HH2 | 

S
i = 2E1s +

Q + X

1 + S2
.
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Heitler-London (HL) model 2

The Coulomb integral reads

Q = h 1s(r1a) 1s(r2b)| [HNN + Hee + H1b + H2a] | 1s(r1a) 1s(r2b)i

=
e2

4⇡✏0

⇢
1

R
+ h 1s(r1a) 1s(r2b)|

1

r12

| 1s(r1a) 1s(r2b)i

�h 1s(r1a)|
1

r1b
| 1s(r1a)i � h 1s(r2b)|

1

r2a
| 1s(r2b)i

�
.

(1)

The exchange integral reads

X = h 1s(r1a) 1s(r2b)| [HNN + Hee + H1b + H2a] | 1s(r1b) 1s(r2a)i

=
e2

4⇡✏0

⇢
S2

R
+ h 1s(r1a) 1s(r2b)|

1

r12

| 1s(r1b) 1s(r2a)i

�S h 1s(r1a)|
1

r1b
| 1s(r1b)i � S h 1s(r2b)|

1

r2a
| 1s(r2a)i

�
.

(2)
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Heitler-London (HL) singlet-triplet splitting
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2.2 Sources of Fields 55

where

Et = E0
a + E0

b +
e2

|ra � rb|
�

K � �a � �b � 2��ab � J

1 � �2
, (2.82)

Es = E0
a + E0

b +
e2

|ra � rb|
+

K � �a � �b � 2��ab + J

1 + �2
. (2.83)

Here �a and �b represent shifts in the distant-atom eigenvalues, E0
a and E0

b ,
respectively, due to the other core. �ab is the interaction of the “overlap charge
density”, a(r)b(r), with a core, and

K =

��
dr1dr2|a(r1)|

2
|b(r2)|

2 e2

|r1 � r2|
(2.84)

and

J =

��
dr1dr2 a�(r1)b

�(r2)
e2

|r1 � r2|
b(r1)a(r2) . (2.85)

The di�erence between the singlet and the triplet is

Es � Et = �2
(K � �a � �b � 2��ab)�2 � J

1 � �4
. (2.86)

Notice that this may be positive or negative, depending upon the relative sizes
of the various parameters. Thus, it is not obvious whether the ground state
will be ferromagnetic or antiferromagnetic. Actual evaluation shows that for
realistic separations the singlet lies lowest. As the nuclei are brought together,
and � increases, the denominators in Et and Es cause Et to increase and Es

to decrease. Eventually, internuclear repulsion also causes Es to increase:

E t

E s

R ab

Equation (2.86) can be evaluated exactly for the case of hydrogenic wave
functions. It is found that for very large separations the triplet has lower
energy. This cannot be, for, as Herring pointed out, the lowest eigenvalue
of a semibounded Sturm–Liouville di�erential operator, such as (2.74), must
be free of nodes. This means it must always be a singlet. This would be a
good description of the chemical bond, but would not explain magnetism. The
problem arises from the oversimplified nature of the Heitler–London states.
The exchange coupling measures the rate at which two identifiable electrons

ET

R

R0

E

^

^

ETc

d ES

e

a

b

ES

�

��

2J
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