





































































































































CHAPTER 2. TRANSITION-METAL AND RARE-EARTH IONS IN SOLIDS34

the most symmetric case of octahedral symmetry (Oh group), the five levels
|l,mi are split only into two multiplets, with degeneracy 2 and 3.

Orbital degeneracy and quenching of L̂

The matrix hl0,m0
|Hcf |l,mi given in Table 2.2 can easily be diagonalized. The

resulting eigenvectors are directly related to the irreducible representations
of the D4h group. In other words, they are determined by the symmetry of
the ligands surrounding the transition-metal ion under consideration. For
this reason, these eigenvectors are called symmetry-adapted wave functions
and, for the specific case of the matrix hl0,m0

|Hcf |l,mi obtained from the
Racah oprators Eq. (2.12), are the so-called real d orbitals

dx2�y2 =
1

p
2
[|2,+2i + |2,�2i]

dz2 = |2, 0i

dxy = �
i

p
2
[|2,+2i � |2,�2i]

dxz = �
1

p
2
[|2,+1i � |2,�1i]

dyz =
i

p
2
[|2,+1i + |2,�1i] .

(2.13)

The real d orbitals are linear combinations of single-electron orbitals |l,mi

with l = 2 and m = �2,�1, 0,+1,+2 (spherical harmonics in the real space).
A 3D representation of the real d orbitals is given in the Assignments but
can easily be found it also on the web. The perfect octahedral symmetry
(Oh) corresponds to choosing Dt = Ds = 0 in the matrix given in Table 2.2.
In this special case, that matrix has only two distinct eigenvalues:

Eeg = 6Dq

Et2g = �4Dq ,
(2.14)

two-fold (eg) and three-fold (t2g) degenerate, respectively. The t2g triplet is
composed by the orbitals dxy, dxz and dyz, which lie at lower energy in perfect
octahedral environment (Oh symmetry group). The orbitals dz2 and dx2�y2 ,
instead, form the eg doublet placed at higher energy (see Fig. 2.3 middle).

We now evaluate the matrix elements of the orbital part of the Zeeman
Hamiltonian for the i-th electron

H
l
Z,i = µB l̂i · ~B = µB B l̂zi , (2.15)
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28 MAGNETIC INTERACTIONS IN MOLECULAR SYSTEMS
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Fig. 2.4. Energies of the d levels in octahedral and tetragonal symmetry.

In order to understand the behaviour of a compound of a transition metal ion
in a magnetic field it is necessary to explicitly introduce the spin–orbit coupling
interaction (Carlin 1986). In a general way the corresponding Hamiltonian can
be written as

Hso =
∑

i

ζili · si (2.35)

where ζ is the spin–orbit coupling constant of the ith electron, and li and si are
the orbit and spin operators, respectively, for electron i. The spin–orbit coupling
constant increases on passing from the light to the heavier elements. Therefore
spin–orbit coupling effects are largely negligible in the magnetic properties of
organic radicals, where only light elements are generally present, while it has
an important role for transition metal ions and even larger for rare earth ions.
The Hamiltonian (2.35) can be rewritten in a simplified form if the spin–orbit
coupling contribution is calculated within a given Russell–Saunders term 2S+1L:

Hso = λL · S (2.36)

where L and S are the total orbital and spin operators, respectively, and

λ = ±ζ/(2S) (2.37)

where the plus sign applies for dn configurations with n < 5, and the minus sign
for n > 5. For n = 5, (2.37) gives zero.

In the perturbation treatment of the spin–orbit coupling interactions the
spin Hamiltonian parameters for an orbitally non-degenerate ground state are
given by:

g = geI − 2λΛ (2.38)
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FIG. 4. (Color online) Isosurface plots of the spin density of
CoPhOMe: a side view in (a), and top view in (b), the latter displaying
only the positive spin density for the sake of clearness. Positive
(negative) values of the spin density are depicted as yellow (cyan)
lobes. Two-dimensional section cuts of the spin density taken in a
plane parallel to ab and centered on M ions for CoPhOMe in (c) and
MnPhOMe in (d).

only interactions of the α or β type; see Fig. 5), and include
the FM magnetic configuration as well. Note that achieving the
convergence for these selected magnetic configurations is not
a trivial task, as the free electron on NITs tends to delocalize;

FiM M-spin flip NIT-spin flip Dimer(M-NIT)
 spin flip 

FM Dimer(M-NIT)
 spin flip 

FIG. 5. (Color online) Schematic view of the set of collinear
magnetic configurations modeled to calculate the exchange inter-
actions in MPhOMe chains, with M = Co, Mn. From left to right:
the FiM (ground state), the single M- and NIT-spin flips, the dimer
(M-NIT) spin flips at the α and β bondings, and finally the FM
magnetic state. The M and NIT spins are depicted as large blue and
small red arrows, respectively.

TABLE II. Computed relative energies of the collinear magnetic
configurations for CoPhOMe and MnPhOMe, comprising the FiM,
the M and NIT spin flips, the dimer (M-NIT)spin flips, and the FM.
Calculations performed with UM = 5 eV (set a); energy values are in
meV.

Magnetic configuration CoPhOMe MnPhOMe

FiM 0.0 0.0
M spin flip 184.1 216.0
NIT spin flip 184.5 216.6
(M-NIT)α spin flip 139.3 173.4
(M-NIT)β spin flip 214.4 213.7
FM 572.2 727.7

hence, a fine tuning of proper magnetic moments initializations
and constraints was needed. The energetics of this set of
magnetic configurations for CoPhOMe and MnPhOMe is
reported in Table II. These results pertain to the set a of
(U,J ) parameters, but consistent values have been obtained
also for sets b and c (not shown). For CoPhOMe, the FM
state, with a magnetic moment of 12 µB /cell, is 572 meV
higher in energy respect to the FiM magnetic ground state.
Consistently, the energy cost of single Co and NIT spin flips is
similar (184 meV). The most interesting result concerns the (α
or β) dimer spin flips: There is a remarkable energy difference
between the two configurations, with the α-bond spin flip
favored by 75 meV with respect to the β one. Moreover, the
(Co-NIT)α spin flip turns out to be, by far, the most favorable
static magnetic excitation. Moving to the Mn chain, the FM
state has a magnetic moment of 18 µB /cell and is 728 meV
higher than the FiM ground state. The energy cost of a Mn spin
flip is 216 meV, and similarly to the Co case, the (Mn-NIT)α
spin flip is the favored magnetic excitation, while the β one is
higher in energy by 40 meV.

An energy-mapping analysis within the broken-symmetry
approach [36] was carried out to derive the exchange coupling
constants, whereby the total energies obtained by first-
principles calculations were then mapped onto a Heisen-
berg spin Hamiltonian: Hex = HM-NIT + HNNN comprising
nearest-neighbor (M-NIT) and next-nearest-neighbor (NNN)
contributions,

HM-NIT = −
∑

r

[Jα S2r · s2r+1 + Jβ S2r · s2r−1], (1a)

HNNN = −
∑

r

[JM-M S2r · S2r+2 + JNIT-NIT s2r−1 · s2r+1] ,

(1b)

with S2r (even sites) indicating the spins of the metal ions and
s2r+1 (odd sites) indicating those of NIT radicals, where spins
are assumed with unitary modulus in order to directly compare
the strength of the exchange couplings in the two chains.
The index r labels different metal-NIT pairs in each chain.
Equation (1a) describes the coupling between the M ion and
the NIT-radical sublattices, the α and β bondings contributing
with a different coupling constant, whereas Eq. (1b) takes into
account both the M-M and the NIT-NIT exchange interactions.
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