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CHAPTER 1. MAGNETISM IN ATOMS 25

i.e., it is proportional to B. These results are known as the anomalous
Zeeman effect, counterposed to the normal Zeeman effect. The second one is
observed when only the orbital angular momentum contributes to the Zeeman
energy and no contribution comes from spin coordinates. This definition
dates back to the end of the nineteenth century, when the spin had not been
discovered yet: With today’s knowledge, there is nothing anomalous in the
anomalous Zeeman effect.

Equation reproduces the magnetic moments of rare-earth ions fairly
well, but not those of transition-metal ions in the solids. In the next chapter,
we will see that this is due to the partial or total quenching of the angular
momentum, which typically occurs when a transition-metal ion is hosted in
a solid.
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Chapter 2

Transition-metal and rare-earth
ions in solids

Lecture: 10.10.2022

2.1 Transition-metal ions in crystals

When an atom is embedded in a solid, the main difference with respect to
the free ion is that electrons are also affected by the electrostatic potential
created by charges outside the atom itself. The aim of ligand-field theory is
that of evaluating the effect of neighboring atoms — referred to as ligands
— on the energy levels of the atom under consideration. Within this the-
ory, the effect of the ligands is taken into account by the symmetry and the
strength of the electric field produced by them. In its original formulation,
developed by Bethe in 1929, ligands were treated as point chargedl] With
this simplification, the approach goes under the name of crystal-field theory.
Already from the first attempts to turn the Bethe approach into a quantita-
tive calculation, it was clear that it produced a splitting of the energy levels
of transition-metal ions far smaller than the one observed in experiments.
Van Vleck (1935) demonstrated that this mismatch originated from neglect-
ing the overlap between the paramagnetic-ion orbitals and the ligand valence
orbitald1l

In transition metals the magnetic orbitals (i.e., the 3d orbitals containing
unpaired electrons) are rather delocalized and have a comparatively high de-
gree of covalency, namely they participate in the chemical bonding. For these
reasons the magnetic d orbitals are strongly affected by the crystal-field inter-
action and the strength of this interaction is comparable to the intra-atomic
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CHAPTER 2. TRANSITION-METAL AND RARE-EARTH IONS IN SOLIDS27

exchange interaction (1-2 eV). In other words, the crystal-field interaction is
stronger than the spin-orbit coupling. The hierarchy of contributions to the
Hamiltonian of a transition-metal ion reads

H=Ho+HL +Het +Heo +Hz (2.1)

As seen in Section , the Hamiltonian H on the r.h.s. of Eq. includes
the kinetic energy of electrons of the atom, their Coulomb interaction with
the nucleus, and the part of electron-electron repulsion that can be written
as a central potential. The orbital eigenstates of the #H, are the same as
those of the hydrogen atom. If terms of higher order than H, are neglected
in the electronic Hamiltonian 7, the spin and orbital eigenstates can be
expressed on a basis of mutually commuting operators: the hydrogen-like
Hamiltonian (H,), L2, S2, [#, 8. These eigenstates are called Russell-
Saunders terms. A perturbative treatment of the remaining contribution
of the electron-electron repulsion (H.,) removes part of the degeneracy and
defines a ground-state multiplet consistent with the first two Hund’s rules.
The next contributions on the right-hand side of Eq. represent the
crystal-field interaction (H.), the spin-orbit coupling (Hs,) and the Zeeman
energy (Hz). In transition-metal ions the strength of interactions on the
r.h.s. of Eq. decreases from left to right. We will see that in rare-earth
ions the relative position of H.s and H, is swapped.

Crystal-field theory for 3d ions

In the following pages we sketch an instructive Calculatio that estimates
how the free-ion energy levels are split due to the presence of the ligands.
As we do not aim at quantitative predictions, we will treat ligands as point
charges (crystal-field theory). We will restrict ourselves to placing these point
charges — which mimic the effect of the orbitals of neighboring atoms — at the
corners of a square (Fig. or at the vertices of an octahedron (Fig. in
which a magnetic d ion is supposed to be embedded. These tutorial examples
are, nevertheless, of relevance in nowadays research. To the first order in
perturbation theory, the effect of crystal-field interaction on single-electron
levels can be expressed through the matrix elements

(', m/|Hesl, m) | 2.2)

!More details about this calculation can be found in the book Inorganic Electronic
Structure and Spectroscopy, Vol. I: Methodology, Editors: E. I. Solomon and A. B. P. Lever
(1999, John Wiley and Sons, Inc.) Chapter: “Ligand Field Theory and the Properties of
Transition Metal Complexes”.
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CHAPTER 2. TRANSITION-METAL AND RARE-EARTH IONS IN SOLIDS28

where [ and m are the quantum numbers associated with 12 and [# for one
electron in a d orbital, namely they represent single-electron levels. Since
the principal quantum number n is the same for all the d levels, it has been
omitted for simplicity of notation. The spin has also been neglected because
H.: does not affect spin coordinates directly. The advantage of using point
charges is that the potential associated with the electric field generated by one
ligand onto the considered 3d ion can be expanded in spherical harmonics.
Taking the nucleus of the paramagnetic ion as the origin of coordinates, the
Coulomb energy associated with the interaction of the electron i with the
point-like ligand h of charge Ze is

) sk Zye® ZOO Am Zk e
C = = Y* 9 5 7ZY 6i7 7
0o T |/B S s TR T e, g (Ons On) P k,qT(M efﬁ )
/
Th e )

The spherical harmonics that are functions of the angular coordinates of the
ligand are highlighted in blue. Summing this potential over all the ligands
labeled by h gives the total energy of the crystal-field Hamiltonian acting on
the i-th electron: Her = ) ) Hern. The dependence of Herp, on the angular
coordinates of the i-th electron put restrictions on the possible values of k.
Eventually, we will have to evaluate matrix elements of the type given in

Eq. 1} containing terms like

<l/7ml|Yk,q(0i7¢i)’lvm> N/Y&n/(ew¢l)£q(927¢l)y‘lﬂl.(0w¢z)dgz

where the integral is performed over the solid angle dS2; = sin 0; df; d¢;. For
d orbitals (I = 2) such terms vanish for £ > 4, therefore we can restrict
ourselves to k <

Let us start focusing on a square planar complex, associated with the
Dy, point group (see Fig. . The symmetry elements of the group impose
additional restrictions to the spherical harmonics that are allowed in the
expansion of He¢ p, so that the most general crystal-field Hamiltonian for a
square planar arrangement of ligands reads

Hpy, =75 0 Yao(0i, 6:) + 73 07 [Ya2(6i, ¢) + Ya,—2(6s, 6:)]
+ 74 p* Yo (0i, 8:) + 73 p* [Ya2(6i, 6) + Ya_2(8i, )] (2.5)
+ 74 p* [Yaa(6:, ds) + Yo _a(6i, 84)] .
2For the same reason, in the case of rare-earths metals, in which the magnetic con-

tribution is provided by partially filled f orbitals (I = 3), one would have to consider
k < 6.
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Figure 2.1: Left: Structure of the TM-Phthalocyanine molecule (with for-
mula (CgHyN2),TM) where TM=transition metal. Right: Illustration of the
crystal-field approximation in which the effect of the four nitrogen atoms
surrounding the TM ions is modeled with negative point charges (red balls).

where p = r;/a with a distance between each ligand and the nucleus of the
transition-metal (TM) ion, thought in the center of a square (Fig. right);
the 7{ coefficients (highlighted in blue for convenience) depend on the ligand
angular coordinates

il S|
2k + 1 4mey a

W=

S Yea(6h, 61) (2.6)

and have the units of an energy. For this specific geometry it is 6, = /2
for every ligand and ¢, = 0, 7/2, 7, 37/2. The value of each 7} coefficient is
obtained inserting the appropriate spherical harmonic and summing over all
the ligands. Assuming the charge Zj,e? to be the same for each ligand, for
instance, the coefficient 73 is obtained as follows
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Any other coefficient can be determined performing the sum ), of the
trigonometric function corresponding to the specific spherical harmonic eval-
uated on the four ligands. Apart from constant prefactors, this trigonometric
contribution to the v} coefficients that are relevant for the planar Dy geom-

etry are computed in Table

Matrix elements of Hp,,: operator-equivalence method

In this paragraph we will evaluate explicitly the matrix elements of the
crystal-field Hamiltonian on the single-electron basis |I,m). This task is
facilitated by expressing the spherical harmonics that are functions of the
electron coordinates in terms of Racah tensor operators

47
Vapgih by

where k is the rank of the tensor and ¢ its component. Note that we have
omitted the explicit dependence on the coordinate (6;, ¢;) because this more
abstract representation will turn out to be useful. The reader who feels
uncomfortable with this notation can always think of the C}! operators in real
space, where they are just functions of (6;, ¢;) proportional to the spherical
harmonics, as defined in Eq. . In terms of the C} operators, the crystal-
field Hamiltonian Hp,, can be expressed in a very compact way Q 59{
2)

; ~
Catd it Gl )

—21DtC2 —7DsCY, (((2.9)
in which the crystal-field coefficients Dg, Dt, and Ds contain the numerical
factors arising from the sum over the +{ indices associated with each ligand
(see Table and the average of r; with respect to the radial part of the
single-electron wave function R, (r;). We give the crystal-field coefficients for
the more general case of a 3d complex associated with a Dy, symmetry, in
which the point-charge ligands occupy the vertices of a compressed /elongated
octahedron:

2 theQE o gZhe2 r2  r2 e 2 7€ (1t rt
6 4mey a® T 47eg

q
k

HD4h = 21Dq

a® b

ad b
(2.10)
The length b represents the distance between the nucleus of the TM ion and
the ligands positioned on the axis perpendicular to the zy plane (Fig.
right). The bar indicates the average over the radial coordinates. If the “b”
terms are omitted, the crystal field generated by a planar square geometry
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is obtained (Fig. . For b = a, instead, one has Dt = Ds = 0; this limit
corresponds to the perfect octahedral symmetry (O}, point group, illustrated
in Fig. left).

To determine how the degenerate levels |I,m) — originating from the #Hq
Hamiltonian — are split by the effect of the crystal field, one has to calculate
the matrix elements of the Racah C} operators on the basis |I,m). Using
the Wigner-Eckart theorem and other elegant results of tensor algebra, the
following equation is obtained

m q —m

(2:)
where the term in parenthesis are just numerical coefficients called 3-j Wigner
symbols. Nowadays routines to compute the 3-j symbols are available in
standard environments, like Mathematica and Matlab, or even from online
calculators. A 3-j symbol is zero if the sum of the components in the bottom
raw (m’' + ¢ —m) is not zero, which restricts the coefficients that are to be
computed explicitly. In the end, only the following non-zero terms remain

¥, m|Call my = (—1)™ /@I + )@ + 1) (g : é)(l k l>

1
(2,21C12,2) = (2,-2|CI2, -2) = .
(2,1|C9)2,1) = (2, -1|C2|2, -1) = _2;41

2
(2,0]C7|2,0) = =
0 0 2
1
(2,1|G312,1) = (2,-1|C3|2,~1) = -
D
(2,01C2)2,0) = -
4 e 7 10
(2,-2/C112,2) = (2, 2042, -2 =4/ =5 -

The last ones are the only off-diagonal matrix elements (highlighted in blue).
We have now all what we need to compute the desired matrix elements which
are given in Table . The eigenvalues of that matrix give the correction to
the energies of the five levels |[,m) that are degenerate with respect to the
Hamiltonian Hy. The crystal-field Hamiltonian Hp,, generally removes this
degeneracy leaving only one pair of levels with the same energy. However, in



3 D % iz W
Ligand | 6y, én | 3cos?0, — 1 | sin®@pe*%r | 35cos? B, — 30cos? By, + 3 | sin® B, (7 cos? O, — 1)e*2n | sin* feT4on
o (2 o < 1 3 1 1
2 /2 | 7/2 -1 -1 3 -1 1
3 /2 T -1 1l 3 il 1
1 |7/2]|3n/2 5 1 3 3 1
Sum -4 0 12 0 4

Table 2.1: Contribution to the 7} coefficients arising from the trigonometric functions contained in the spherical
harmonics (second raw) evaluated on the different ligands of the planar Dy, geometry. The sum over all the ligands
is given in the last raw. Normalization constants of the Y} ,(0), ¢5) functions and numerical prefactors present in
Eq. are not considered for clarity.

HDM |2’2> |271> |230> |2’_1> |2»_2>

(2,2| |(Dg— Dt +2D3y 0 0 0 5Dq

(2,1] 0 —4Dg + ADt — Ds 0 0 i

(2,0] 0 0 6Dq — 6Dt — 2Ds 0 0

(2,1] 0 0 0 |'—4Dq + 4Dt — Ds 0
(2, -2] 5Dq 0 0 | 0 [ Dg — Dt +2Dsy

Table 2.2: Matrix elements of the crystal-field Hamiltonian (I', m’|Hp,, |l, m) for an arrangement of ligands consistent
with the Dy, point group in 3D, namely with point charges disposed on an elongated/compressed octahedron.
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Rare-earth manganites

octahedral symmetry Oy, compressed octahedral
symmetry Dy,

CoPhOMe spin chain

elongated octahedral
symmetry D,

Figure 2.2: Top: Structure of a generic rare-earth manganite (left), REMnOs,
where RE=rare-earth metal, and of the Co(hfac)s(NITPhOMe) spin chain
— shortened as CoPhOMe in the figure; the yellow shadowed region indi-
cates the spin density obtained from DFT calculations. In both cases the
magnetic properties of the transition-metal ions are crucially affected by the
environment of ligands in distorted octahedral symmetry (Dy, group). Bot-
tom: Illustration of the octahedral crystal-field associated with the O and
the Dy, point groups. Negative point charges (red balls) lie at the vertices
of a Platonic octahedron (left) or of compressed (center) and elongated oc-
tahedra (right). The corresponding symmetry groups Oy and Dy, are also

indicated.



CHAPTER 2. TRANSITION-METAL AND RARE-EARTH IONS IN SOLIDS34

the most symmetric case of octahedral symmetry (Oy, group), the five levels
|l, m) are split only into two multiplets, with degeneracy 2 and 3.

Orbital degeneracy and quenching of L

The matrix (I, m'|Het|l, m) given in Table can easily be diagonalized. The
resulting eigenvectors are directly related to the irreducible representations
of the Dy, group. In other words, they are determined by the symmetry of
the ligands surrounding the transition-metal ion under consideration. For
this reason, these eigenvectors are called symmetry-adapted wave functions
and, for the specific case of the matrix (I',m/|Hc|l,m) obtained from the

Racah oprators Eq. l} are the so-called real d orbitals

1

dy2_y2 = ﬁ [12, +2) + (2, —2)]

i

oy = A [12,+2) — |2, -2)] (2.13)
1

i e [ R D

V2

The real d orbitals are linear combinations of single-electron orbitals |I, m)
with l = 2 and m = —2,—1,0,+1, +2 (spherical harmonics in the real space).
A 3D representation of the real d orbitals is given in the Assignments but
can easily be found it also on the web. The perfect octahedral symmetry
(Op,) corresponds to choosing Dt = Ds = 0 in the matrix given in Table
In this special case, that matrix has only two distinct eigenvalues:

e O (2.14)
Etzg 5 _4Dq g
two-fold (e,) and three-fold (t2,) degenerate, respectively. The to, triplet is
composed by the orbitals d,,, d,. and d,., which lie at lower energy in perfect
octahedral environment (O}, symmetry group). The orbitals d.2 and d,2_,2,
instead, form the e, doublet placed at higher energy (see Fig. middle).
We now evaluate the matrix elements of the orbital part of the Zeeman
Hamiltonian for the i-th electron

by RS (2.15)
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Elongated @t Compressed
Dy, O Dy,

h
- eg d.»
d.2 => =<: 2y ‘?%/\.‘
Aoy | =— tog —dy. dy:
Wi O

Yy

Figure 2.3: Splitting of the energies levels e, and t,, — characterizing a crystal-
field Hamiltonian associated with a perfect octahedral symmetry — produced
by compression/elongation of the ligand octahedron. Both operations reduce
the symmetry from Oy, to Dyy.

assuming the external field B to be applied along the z axis. When B = 0,
the configuration with lower energy can be obtained placing the electron i
in any of the d,,, d,. and d,, orbitals defining the ¢,, multiplet, the energy
of these three configurations being Ey, . When B # 0, the matrix elements
of the Hamiltonian Ho + Hcr + Hyz evaluated within the ¢5, multiplet read

HO = Hcf I HZ ‘d$y> ’dxz> |dyz>
(dgyl Ei,, 0 0
<dzz’ 0 Et2g _ZMBB
(d,.] 0. [itnBl B,

This Hamiltonian is trivially diagonal on the basis set

|duy)
it :
|2> +1> = _72 [|d:rz> i Z|dyz>] (2.16)
1
2,—1) = — [|dz,) — 2|dy.
2,-1) 7 (ldez) — ildyz)]
with ordered eigenvalues
Edzy — Etgg
E27+1 = Et2g aF /LBB (217)

EZ,—l = Et2g = BB
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.



