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Before considering the e↵ect of a magnetic field we note that, if Vee(ri) is
estimated properly, the residual contribution to the electron-electron repul-
sion
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shall be small and, as such, can be treated as a perturbation.
What can we say about the strength of the Zeeman and spin-orbit interac-

tion in comparison with the H0,i Hamiltonian? The spacing between atomic
levels defined by the H0,i Hamiltonian falls typically in the range 1 � 10
eV, while for applied fields in the range 1 � 10 T (in ordinary laboratories
magnetic fields hardly exceed this upper bound) the interaction HZ is of the
order of 0.1�1 meV ' 1�10 K. Thus, the Zeeman interaction can be safely
treated as a perturbation with respect to H0,i. We will see later that the
Zeeman splitting is actually comparable with the thermal energy kBT and
this is one of the reasons why statistical physics will be needed. The Zeeman
interaction is associated with the paramagnetic response of an atom.
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Fig. 6.12. Values for the spin–orbit parameter �nl, defined in (6.87), for the valence
shells of neutral atoms in their ground state, calculated by Cowan [182]

The spin orbit coupling, discussed in Sect. 6.4, produces the observed dou-

blet in the atomic spectra because it lifts the degeneracy by creating two

states with j = l ± s. The energy of these two states are obtained by writing

j = l + s and using the expression j · j = l · l + 2 l · s + s · s to rewrite the

spin–orbit Hamiltonian,

Hso = �nl(r) l · s =
�nl(r)

2
[j · j � l · l � s · s] . (6.89)

The eigenstates of this Hamiltonian are the functions |Rn,l; j, mj , l, si and we

obtain the eigenvalues as

hRn,l; j, mj , l, s|Hso|Rn,l; j, mj , l, si =
�nl(r)

2
[j(j + 1) � l(l + 1) � s(s + 1)].

(6.90)

Therefore the substates with j+ = 3/2 experience an energy shift Ej+ = �l/2

and the substates with j� = 1/2 are shifted by Ej� = ��l, with the separation

given by the Landé interval rule Ej+ � Ej� = �l j+.

In our derivation of the spin–orbit Hamiltonian we have tacitly assumed

that the spin s and angular momentum l are those of a single electron. The

formalism is more general, however, as already mentioned in Sect. 6.4.1. In

multielectron systems the Coulomb and exchange interaction couple the spins

of the individual electrons to a resultant spin according to S =
�

i si and the

individual orbital momenta to a coupled orbital momentum L =
�

i li. This

so-called Russell–Saunders or L–S-coupling scheme therefore creates states

that are usually denoted as terms or multiplets and written as
2S+1L. As for

a one-electron systems the e↵ect of the spin–orbit coupling is to couple the

total spins and angular momenta according to J = L+S and the one-electron

Figure 1.1: Theoretical values for the spin-orbit parameter ⇣nl, defined
in Eq. (1.61), obtained by the relativistic Hartree-plus-statistical-exchange
method for the valence shell of the neutral atoms in their ground state. Taken
from R. D. Cowan, The theory of Atomic Structure and Spectra (University of
California Press, Berkeley, 1981). Reproduced in Chapter 6 of “Magnetism:
from Fundamentals to Nanoscale Dynamics”, by J. Stöhr and H. C. Siegmann
(2006) available in the BookChapters folder.

For what concerns the spin-orbit interaction, the operator ⇠so defined in
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The picture depicted above is consistent with a series of transitions that
only occur within a given spin subspace – the singlet or the triplet. In fact, in
the electric-dipole approximation, transitions between levels associated with
di↵erent spin states are forbidden (only transitions involving �S = 0 and
�L = ±1 are allowed to the first order). This scenario was actually puzzling
in the early decades of the last century. The seminal works of Heisenberg
to interpret the emission spectrum of neutral He thus pinpointed the im-
portance of spin in defining the scheme of the energy levels in atoms and
the allowed/forbidden transitions among them. Starting from those works
Heisenberg developed the concept of exchange interaction in the late 1920s.
Particular influential was his proposal to express the splitting between sin-
glet and triplet state for the occupation of the same single-electron levels, e.g.
(1s)(2s) or (1s)(2p), in terms of an e↵ective coupling between spins. Using
the fact that (Ŝ)2 = (ŝ1 + ŝ2)2 = (ŝ1)2 + 2 ŝ1 · ŝ2 + (ŝ2)2, we have seen in one
of the Assignments that the e↵ective spin Hamiltonian

Hexch = �2J ŝ1 · ŝ2 (1.71)

has eigenvalues

h�0,0|Hexch|�0,0i = +
3

2
J for the singlet

h�1,m|Hexch|�1,mi = �
1

2
J for the triplet ,

(1.72)

meaning that this operator exactly reproduces the splitting existing between
the singlet and the triplet state of a given electronic configuration. Note












