
 







Chapter 1

Magnetism in Atoms

Lecture: 26.09.2022

1.1 Magnetism before quantum physics

The fact that some solids attract or repel other materials by virtue of
what nowadays would be called magnetic interaction was already evident to
mankind in ancient times. One of the first references to the magnetic prop-
erties of magnetite (Fe3O4, lodestone) was reported by the Greek philoso-
pher Thales of Miletus in the 6th century BC. The name “magnet”probably
comes from the lodestones found in Magnesia. Though the use of lodestone
in compasses for navigation in China dates back to Middle Ages, humans
kept perceiving magnetism as a kind of magic till the 19th century, when a
clear relationship between this phenomenon and moving electric charges was
established1. This observation opened the door to the modern understand-
ing of magnetism in solids in terms of self organization of individual atomic
magnetic moments.

The first important observations toward a rationalization of magnetism
and its origin came with the experiments of Ampère and Oersted, in the
early decades of the 19th century. They demonstrated that i) a current is
able to influence a magnetic needle (Oersted) and ii) a mechanical force exists
between two wires in which an electric current circulates (Ampère). Later,
Faraday completed our knowledge of magnetic field by discovering that time
dependent magnetic fields can create an electromotive force. The current

1 The Theory of Magnetism, D. C. Mattis – Harper’s physics series – Harper & Row

(New York, Evanston, and London, 1965).
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description of electromagnetic fields was provided by J. C. Maxwell through
the well-known set of equations named after him. The origin of magnetism
in matter – precisely of magnetic moments – was more debated: Ampère
postulated that magnetism in atoms originates from the existence of closed
atomic-sized currents. Poisson and later Maxwell, instead, ascribed the origin
of atomic magnetic moments to magnetic charges that appear always coupled
into dipoles. Today we know that part of the magnetism of atoms is due to
the motion of electrons about the nuclei. This orbital contribution is in line
with the intuition of elementary currents put forward by Ampère. Another
contribution is given by the intrinsic magnetic moment of electrons (spin
contribution).

We will start our course showing that electrons must have an intrinsic
magnetic moment in order that their quantum-mechanical description fulfills
the same invariance properties as the Maxwell equations. Moving further
in the course, you will appreciate how magnetic materials have been used
across the years as benchmark to test our understanding of fundamental
achievements in theoretical physics: from quantum mechanics to the theory
of critical phenomena.

1.2 The Dirac equation and the electron spin

Lorentz covariance

While Newton’s laws of classical mechanics are invariant under Galilean
transformations, Maxwell equations are not. The latter are rather invari-
ant (covariant) w.r.t. Lorentz transformations2. If ~r and t are the position
vector and the time measured in a certain reference frame, in a second refer-
ence frame that moves with velocity

~v = c tanh↵ n̂ (1.1)

w.r.t. the first one they transform as
(

~r0 = ~r + [(cosh↵� 1) (~r · n̂)� sinh↵ (ct)] n̂

ct0 = cosh↵ (ct)� sinh↵ (~r · n̂)
(1.2)

with c being the light velocity and ↵ = atanh(v/c). The important take of
the Lorentz transformation of coordinates in Eq. (1.2) is that it mixes up

2
The Galilean group encompasses Galilean transformations plus rotations and trans-

lations; the Poincaré group encompasses Lorentz transformations (boosts) plus rotations

and translations.
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time and space coordinates. For simplicity we limit ourselves to a Lorentz
boost along the x direction in which case Eq. (1.2) simplifies as

(
x0 = cosh↵ x� sinh↵ (ct)

ct0 = cosh↵ (ct)� sinh↵ x .
(1.3)

It is straightforward to verify that the di↵erence of squared spacetime inter-
vals is the same in both reference frames

(c�t)2 � (�x)2 = (c�t0)2 � (�x0)2 . (1.4)

In general, spacetime intervals

(�s)2 = (c�t)2 � (�~r)2 (1.5)

are conserved across frames related by a Lorentz transformation. This leads
to the introduction of the 4-vector formalism

xµ = (ct,~r) (1.6)

with the metric tensor

gµ⌫ = gµ⌫ =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA (1.7)

so that
(�s)2 = gµ⌫�xµ�x⌫ = �xµ�xµ . (1.8)

The invariant spacetime interval �s is equal to the product of the speed of
light by the proper time ⌧ , which fulfills the property

�⌧ = ��1�t with ��2 = 1�
v2

c2
. (1.9)

With these few concepts at hand, one can proceed defining the 4-velocity

uµ =
dxµ

d⌧
=

dt

d⌧
(c,~v) = � (c,~v) (1.10)

and from this the 4-momentum

pµ = muµ = m� (c,~v) (1.11)
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which has conserved length pµpµ = m2c2 (using the metric tensor in
Eq. (1.7)). Since energy and momentum in restricted relativity are defined
as

~p = �m~v

E = �mc2
(1.12)

the 4-momentum can also be written as follows

pµ =

✓
E

c
, ~p

◆
(1.13)

which leads to the famous energy-momentum relation

pµpµ =
E2

c2
� (~p)2 = m2c2 ) E2 = (c~p)2 +m2c4 . (1.14)

Using the 4-vector formalism Maxwell equations can be written in an
elegant and compact way, in which they are manifestly covariant, i.e., in-
variant under Lorentz transformations. We will limit ourselves to the few
ideas exposed so far because they su�ce to describe the early attempts to
develop a quantum-mechanical theory of the atom compatible with restricted
relativity.

Early attempts

Starting from the quantum Hamiltonian of a non-relativistic free particle

H =
p̂
2

2m
(1.15)

the mapping of H and the momentum to operators

H ! i~ @
@t

p̂ ! �i~~r
(1.16)

leads to the Schrödinger equation for a free particle

i~@ 
@t

= �
~2
2m

r
2 . (1.17)

Identifying E in Eq. (1.14) with H, it seems natural to assume

H =
p
(c~p)2 +m2c4 (1.18)
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as the Hamiltonian of a relativistic free particle and accordingly

i~@ 
@t

=
p

�~2c2r2 +m2c4 (1.19)

as the relativistic equivalent of the Schrödinger equation (1.17). The reader
is immediately faced with the problem of handling the square-root operator,
as scientists in the 1920s were. One way to overcome this problem it to
square operators on both sides of the equation, which yields the so-called
Klein-Gordon equation

� ~2@
2 

@t2
=

�
�~2c2r2 +m2c4

�
 . (1.20)

Plane waves
 = Nei~x·~p/~ (1.21)

are solutions to the Klein-Gordon equation with eigenvalues

E = ±

p
(cp)2 +m2c4 (1.22)

Such eigenvalues indeed fulfill the energy-momentum relation in Eq. (1.14).
However, about a century ago it was not obvious how to interpret negative-
energy solutions. Nowadays we know that they are associated with an-
tiparticles. The final blow for this approach to a relativistic formulation of
quantum-mechanics is the fact that the probability density (modulus of the
wave function) obtained from the solutions to the Klein-Gordon equation is
not positive defined.

The Dirac approach

Following the historical path taken by Paul F. Dirac in 1928, we list the re-
quirements that a relativistically covariant version of the Schrödinger equa-
tion should fulfill:

for the free-particle case its eigenvalues should be the same as the Klein-
Gordon Eq. (1.20);

time and space derivatives should enter that equation similarly;

its wave function should correspond to a positive-defined probability
density.
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The first requirement is trivially fulfilled by the Klein-Gordon equation; the
second one as well because just second derivatives of time and space coor-
dinates appear; the third requirement is not fulfilled. To circumvent this
problem – without discarding the positive aspects of the Klein-Gordon equa-
tion – Dirac proposed to replace the Schrödinger equation with a set of
N -coupled equations linear both in time and space coordinates. Formally,
he represented the wave function with a vector (of functions!)

 =

2

6664

 1

 2
...
 N

3

7775
(1.23)

which is solution of the equation

i~ @
@t

2

6664

 1

 2
...
 N

3

7775
= �i~

�
↵xp̂x +↵yp̂y +↵zp̂z +mc2�

�

2

6664

 1

 2
...
 N

3

7775
(1.24)

with ↵x, ↵y, ↵z, � being N ⇥N matrices. The requirement that the spec-
trum of the eigenvalues of the Dirac equation be the same as for the Klein-
Gordon equation implies that these four matrices must obey the following
algebra:

↵h↵k +↵k↵h = 2I (if k = h), 0 (otherwise)

↵k� + �↵k = 0

↵2 = �2 = I
(1.25)

where I is the N⇥N identity matrix and 0 the N⇥N null matrix. From this
algebra it follows that eigenvalues of the ↵h, (h = x, y, z) and � matrices
can only be ±1 and their trace has to be zero. Both requirements can only be
fulfilled if N is even. For N = 2 we know that only 3 independent matrices
with vanishing trace can be built, i.e., the Pauli matrices. The smallest
dimension in which the algebra of Eqs. (1.25) can be realized is thus N = 4.
A possible 4⇥4 representation of the ↵h, (h = x, y, z) and � matrices reads

↵h =

✓
0 �̂h
�̂h 0

◆
and � =

✓
I 0

0 �I

◆
(1.26)

where �̂h are the (2⇥ 2) Pauli matrices

�̂x =

✓
0 1
1 0

◆
�̂y =

✓
0 �i
i 0

◆
�̂z =

✓
1 0
0 �1

◆
(1.27)
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For an electron at rest with mass me the Dirac equation (1.24) reduces
to

i~ @
@t

2

664

 1

 2

 3

 4

3

775 = mec
2

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

2

664

 1

 2

 3

 4

3

775 (1.28)

whose solutions are given by

 1 = e�
imec

2t
~

2

664

1
0
0
0

3

775  2 = e�
imec

2t
~

2

664

0
1
0
0

3

775 (1.29)

 3 = e
imec

2t
~

2

664

0
0
1
0

3

775  4 = e
imec

2t
~

2

664

0
0
0
1

3

775 (1.30)

The first two eigenfunctions correspond to positive energy (electron), while
the second two to negative energy (positron).

The emergence of spin in the low-energy limit

We consider now the behavior of an electron with charge qe and mass me

in a static electromagnetic field at low energy, namely much smaller than
the particle rest energy mec2. The non-relativistic Hamiltonian is obtained
adding the electrostatic energy term to the free-particle Hamiltonian and
replacing the momentum according to the minimal coupling prescription

p̂ ! p̂� qe ~A , (1.31)

which yields

H =
1

2me

⇣
p̂� qe ~A

⌘2

+ qe� (1.32)

The Dirac equation acquires similar terms. As we are interested in the non-
relativistic limit, it is convenient to split the four components of the wave
function into two components ('̃1, '̃2) associated with the positive-energy so-
lutions (electron) and two components (�̃1, �̃2) associated with the negative-
energy solutions (positron). The corresponding Dirac equation reads

i~ @
@t

2

664

'̃1

'̃2

�̃1

�̃2

3

775 = c�̂ ·

⇣
p̂� qe ~A

⌘
2

664

�̃1

�̃2

'̃1

'̃2

3

775+ qe�

2

664

'̃1

'̃2

�̃1

�̃2

3

775+mec
2

2

664

'̃1

'̃2

��̃1

��̃2

3

775 (1.33)
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Note that in this notation we have already applied the ↵h, (h = x, y, z)
and � matrices: the first ones swap the position of the ('̃1, '̃2) and (�̃1, �̃2)
components and bring the �̂ operators; � just brings a minus sign in front
of the (�̃1, �̃2) components.

In the low-energy limit we are considering here – in which mec2 is much
larger than any other energy scale in the problem – the wave function can be
factorized into a part varying slowly with time and in a fast-varying (with
frequency mec2/~) part:

2

664

'̃1

'̃2

�̃1

�̃2

3

775 = e�
imec

2t
~

2

664

'1

'2

�1

�2

3

775 (1.34)

Defining
⇡̂ = p̂� qe ~A (1.35)

the slow-varying parts of the wave function should fulfill the equation

i~ @
@t

2

664

'1

'2

�1

�2

3

775 = c�̂ · ⇡̂

2

664

�1

�2

'1

'2

3

775+ qe�

2

664

'1

'2

�1

�2

3

775� 2mec
2

2

664

0
0
�1

�2

3

775 (1.36)

For kinetic energies and field-interaction energies much smaller than mec2

each equation for the two � components can be approximated as

�r =
�̂ · ⇡̂

2mec
'r (1.37)

with r = 1, 2. Note that this equation implies that the amplitude of each �r

be roughly v/c times smaller than the corresponding 'r component. Equa-
tion (1.37) can be substituted into the equation of the 'r components to
obtain

i~ @
@t


'1

'2

�
=


(�̂ · ⇡̂)(�̂ · ⇡̂)

2me
+ qe�

� 
'1

'2

�
(1.38)

Using the properties of the Pauli matrices the first term on the r.h.s. can be
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written in a more familiar way3

(�̂ · ⇡̂)(�̂ · ⇡̂) = ⇡̂2 + i�̂ · ⇡̂ ⇥ ⇡̂ =

=
⇣
p̂� qe ~A

⌘2

+ i�̂ ·

⇣
p̂� qe ~A

⌘
⇥

⇣
p̂� qe ~A

⌘

=
⇣
p̂� qe ~A

⌘2

+ i2qe~
⇣
~r⇥ ~A+ ~A⇥ ~r

⌘

=
⇣
p̂� qe ~A

⌘2

� qe~ �̂ · ~B

(1.39)

to obtain the famous Pauli equation

i~ @
@t


'1

'2

�
=

2

64

⇣
p̂� qe ~A

⌘2

2me
�

qe~
2me

�̂ · ~B + qe�

3

75

'1

'2

�
(1.40)

For a uniform magnetic field the vector potential can be written as4 ~A =
( ~B ⇥ r)/2. After some elementary passages the Pauli equation takes the
form

i~ @
@t


'1

'2

�
=


p̂
2

2me
�

qe~
2me

⇣
l̂+ 2ŝ

⌘
· ~B +

q2e
8me

( ~B ⇥ r̂)2 + qe�

� 
'1

'2

�
(1.41)

where l̂ = r̂ ⇥ p̂/~ is the orbital momentum and ŝ = ˆ̂�/2 is the particle
spin. We found it convenient to indicate the position operator with r̂, for
coherence of notations throughout the lecture notes. Moreover, we adopt the
convention of expressing angular momenta in ~ units.

The reader will recongnize in the term linear in ~B the Zeeman interaction.
This interaction consists of an orbital and a spin contribution. The first
contribution does not vanish for an electron that has a finite component of
the angular momentum along the applied field, assumed as z direction, e.g.,
an electron occupying an atomic orbital with l = 1 and m = �1 (see later).
Due to the negative charge of the electrons, the orbital part of the Zeeman
interaction favors quantum states for which l̂z has the minimal expectation
value. In a semiclassical picture one would say that the Zeeman interaction
favors antiparallel alignment between the angular momentum ~l and ~B. As for
the spin contribution to the Zeeman energy, we would like to remark that it

3
The reader has to interpret this operator as applied to each component of the wave-

function 'r (with r = 1, 2). In particular, one has ~r⇥ ( ~A'r) = 'r(
~r⇥ ~A) + (~r'r)⇥

~A=

'r(
~r⇥ ~A)� ~A⇥ (~r'r) and therefore

⇣
~r⇥ ~A+ ~A⇥ ~r

⌘
'r = 'r(

~r⇥ ~A)� ~A⇥ (~r'r) +

~A⇥~(r'r)= 'i(
~r⇥ ~A) = 'r

~B.

4
This choice of ~A corresponds to the Coulomb gauge ~r · ~A = 0.
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emerged spontaneously from the Dirac equation taking the low-energy limit.
Note that the number 2 in front of the spin operator ŝ correctly accounts for
the gyromagnetic factor of the spin being twice the gyromagnetic factor of
the orbital momentum (up to 0.1%). Henceforth, we will express the Zeeman
interaction of an electron (with electric charge qe = �e) as

HZ = µB

⇣
l̂+ 2ŝ

⌘
· ~B = �µ̂ · ~B , (1.42)

where µB = e~/(2me) = 9.274 · · ·⇥10�24 J/T = 5.788 · · ·⇥10�2 meV/T is the
Bohr magneton and µ̂ = �µB (̂l+ 2ŝ) is the magnetic-moment operator. As
anticipated in the first section, this magnetic moment consists of an orbital
and an intrinsic (spin) contribution.

The term in the Pauli equation (1.41) proportional to B2 is much weaker
than the Zeeman interaction and it is only observable if the total angular mo-
mentum of electrons in one atom exactly vanishes. This term is responsible
for the so-called diamagnetic contribution5.

The comparison between the Schrödinger equation and the Pauli equa-
tion (1.41) highlights that the latter includes the spin contribution explicitly.
However, as spatial and spin d.o.f. are not directly coupled, the solutions of
the Pauli equation can be written as


'1

'2

�
=  Schr.(r) |spini (1.43)

with |spini indicating the spin part of the wave function. The spatial part
 Schr.(r) is a solution of the Schrödinger equation.

In the next section we will see that the spin-orbit interaction, instead,
directly couples spatial and spin d.o.f.. Therefore, factorizing spatial and
spin parts in the wave function is not accurate when spin-orbit interaction is
taken into account.

Spin-orbit coupling

The calculation reproduced in the previous section is not the only possible
way to take the low-energy limit of the Dirac equation for an electron. Foldy
and Wouthuysen6 developed a systematic procedure to decouple the positive-

5
From the expression for the diamagnetic energy one can define an e↵ective diamag-

netic moment per atom as µd = �@Ed/@B amounting to ⇠ �10
�11

eV/T. Thus, the

diamagnetic moment per electron points antiparallel to the applied magnetic field and is

far smaller than the paramagnetic moment.
6
Leslie L. Foldy and Siegfried A. Wouthuysen, Phys. Rev. 78, 29 (1950).



CHAPTER 1. MAGNETISM IN ATOMS 11

and negative-energy solutions by expanding the Hamiltonian in powers of (en-
ergy terms)/(mec2) along with the successive application of canonical trans-
formations. The resulting low-energy Hamiltonian for the positive-energy
solutions (electrons) reads:

H = mec
2 +

p̂
2

2me
�

qe~
2me

⇣
l̂+ 2ŝ

⌘
· ~B +

q2e
8me

( ~B ⇥ r̂)2 + qe�

� i
qe~2
4m2

ec
2
ŝ · ~r⇥ ~E �

qe~
2m2

ec
2
ŝ · ~E ⇥ p̂

�
p̂
4

8m3
ec

2
�

qe~2
8m2

ec
2
~r · ~E .

(1.44)

The first row of the equation above comprises the terms already encountered
in the Pauli equation plus the rest-mass energy. The two terms in the second
row correspond to the spin-orbit coupling. For static electromagnetic fields
one has ~r⇥ ~E = 0 and, accounting for the sign of the electron charge qe = �e,
the spin-orbit interaction takes the form

Hso =
e~

2m2
ec

2
ŝ · ~E ⇥ p̂ . (1.45)

In the next sections we will specialize the field ~E to the electron-nucleus
Coulomb interaction, possibly corrected with the screening e↵ect of the other
electrons in the atom (see Eq. (??)). However, the validity of Eq. (1.45) goes
beyond the atom and it applies, for instance, to the spin of electrons in
a semiconductor that experience an electric field generated by an interface
or applied externally (Rashba spin-orbit coupling). One can interpret the
spin-orbit Hamiltonian (1.45) as a Zeeman interaction of the spin magnetic
moment µ̂ = �2µBŝ with an e↵ective magnetic field ~B = ( ~E ⇥ ~v)/(2c2)
experienced by the electron moving with velocity ~v = ~p/me in a field ~E.
Classically, this e↵ective magnetic field would be two times larger. The
discrepancy between experimentally observed splitting of energy levels (fine
structure) and the result of the classical (non-relativistic) calculation ani-
mated a long debate at the beginning of the twentieth century.
When the electric field is the gradient of a spherically symmetric electro-
static potential �(r), like for electron-nucleus Coulomb interaction, it takes
the form:

~E = �r�(r) = �
1

r

@�(r)

@r
r̂ . (1.46)

Replacing this term into Hamiltonian (1.45) the familiar form of the spin-
orbit interaction is obtained

Hso = �
e~

2m2
e c

2

1

r

@�(r)

@r
ŝ·(r̂⇥p̂) = �

e

2

✓
~

me c

◆2 1

r

@�(r)

@r
ŝ· l̂ = ⇠so ŝ· l̂ (1.47)
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where we used that r̂⇥ p̂ = ~ l̂. Since @�(r)/@r is negative for electrons, the
quantity

⇠so = �
e

2

✓
~

me c

◆2 1

r

@�(r)

@r
, (1.48)

averaged over the spatial wave function, is positive. Therefore, the spin-orbit
interaction favors antiparallel alignment between the spin and the orbital
angular momenta of an electron. This can be seen more formally defining
the sum of the spin and orbital momentum as ĵ = ŝ + l̂ and squaring both
sides of the equation. The scalar product ŝ · l̂ can then be expressed in terms
of the squares of the three angular momenta:

ŝ · l̂ =
1

2
(̂j2 � ŝ

2
� l̂

2) , (1.49)

Inserting this result into Eq. (1.47) gives

⇠so =
1

2
⇠so(̂j

2
� ŝ

2
� l̂

2) . (1.50)

which manifestly favors minimal values of the total angular momentum j.
The terms in the last row of Eq. (1.44) – proportional to p̂

4 and to ~r · ~E
(the so-called Darwin term) – are very small and will be neglected henceforth.


