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The Magnetic Hamiltonian

Most of the magnetic properties that we shall consider arise from electrons. In
this chapter we shall develop the Hamiltonian which pertains to the magnetic
behavior of a system of electrons. It has been found experimentally that the
electron possesses an intrinsic magnetic moment, or spin. The existence of
such a moment is a consequence of relativistic considerations. Therefore it is
essential that we look for a relativistic description of the motion of an electron.
This is given by the Dirac wave equation. We shall limit our discussion of
the Dirac equation to the origin of the spin and the form of the spin-orbit
interaction (for a more thorough treatment see [6]).

2.1 The Dirac Equation

The objective in developing a relativistic quantum theory of the electron is
to ensure that space coordinates and time enter the theory symmetrically.
There are several ways of doing this. One way is to start with the general
wave equation

i�
∂ψ(r, t)

∂t
= Hψ(r, t) . (2.1)

Since the first derivative with respect to time enters on the left, the Hamil-
tonian must contain a linear space derivative, that is, the Hamiltonian must
be linear in the momentum, p = −i�∇. Thus we assume that the Hamiltonian
has the form

H = cα · p + βmc2 , (2.2)

where α and β are arbitrary coefficients. By imposing certain requirements
on the solutions of (2.1), such as that it gives the correct energy-momentum
relation E2 = p2c2 + m2c4 we obtain conditions on the quantities α and β.
These conditions may be satisfied by the 4 × 4 representations

β =

[

1 0
0 −1

]

and α =

[

0 σ

σ 0

]

, (2.3)
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where the σi are the Pauli matrices

σx =

[

0 1
1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0
0 −1

]

, 1 =

[

1 0
0 1

]

. (2.4)

Thus the wave function ψ must be a four-component object. Two of the
components correspond to positive-energy solutions and the other two cor-
respond to negative-energy solutions. Holes in the negative-energy spectrum
correspond to positrons and require energies of the order of mc2 for their
production.

From a Lagrangian formulation we find that the effect of an external elec-
tromagnetic field described by the vector potential A and the scalar potential
φ may be included by making the substitutions p → p − (e/c)A and adding
eφ to the Hamiltonian. Thus the Dirac equation becomes

i�
∂ψ

∂t
=
[

cα ·
(

p − e

c
A
)

+ βmc2 + eφ
]

ψ . (2.5)

Since the energies encountered in magnetic phenomena are much smaller
than mc2, it is convenient to decouple the positive- and negative-energy
solutions. This is accomplished by a canonical transformation due to Foldy and
Wouthuysen [7]. The resulting Hamiltonian associated with the positive-energy
solutions has the form

H =



mc2 +
1

2m

(

p − e

c
A
)2

− p4

8m
·

3c2



+ eφ − e�

2mc
σ · H

−i
e�

2

8m2c2
σ · ∇ × E − e�

4m2c2
σ · E × p − e�

2

8m2c2
∇ · E . (2.6)

The interesting terms in this Hamiltonian are the last four. The term

−(e�/2mc)σ · H

corresponds to the interaction of the intrinsic spin of the electron with the
external field H. The next two terms are spin-orbit terms. In a stationary
vector potential ∇ × E = 0. And, if the scalar potential, V (r), is spherically
symmetric,

σ · E × p = −1

r

∂V

∂r
σ · r × p = −�

r

∂V

∂r
σ · l ,

where �l = r × p. Thus, the spin-orbit terms reduce to

e�
2

4m2c2

1

r

∂V

∂r
σ · l . (2.7)

This is what would be expected for an electron spin interacting with the
field produced by its orbital motion, except that it is reduced by a factor
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of 1
2 due to relativistic kinematics, also known as the Thomas precession.

The last term in (2.6), the so-called Darwin term, represents a correction to
the Coulomb interaction due to fluctuations (zitterbewegung) in the electron
position arising from the presence of the negative-energy component in the
wave function.

The term p4/8m3c2 in (2.6) is very small, and along with the Darwin term,
it may be neglected for our purposes. If we define the zero of energy as the
rest-mass energy, the Hamiltonian which governs the magnetic behavior of an
electron is

H =
1

2m

(

p − e

c
A
)2

+ eφ − e�

2mc
σ · H + ζl · σ , (2.8)

where we have introduced the spin-orbit parameter

ζ =
e�

2

4m2c2

1

r

∂V

∂r
.

The wave functions associated with (2.8) have two components. These two
component functions transform differently under rotations in 3-dimensional
space, as we shall see below, than vectors. They are called spinors.

2.2 Sources of Fields

In developing the general Hamiltonian for a single electron we found that
the interaction of an electron with its environment is described by the scalar
potential φ and the vector potential A. Both these potentials are functions of
the position of the electron under consideration as well as of the coordinates
and momenta of any other particles in the system, that is,

φ(r; r1, r2, . . . ,p1,p2, . . .) and A(r; r1, r2, . . . ,p1,p2, . . .) .

In this section we shall investigate the form these potentials take in a crys-
talline solid. Our objective is to catalog all the interactions that enter into the
magnetic properties of solids so that we shall be free to draw on these results
later.

2.2.1 Uniform External Field

The simplest potentials are those arising from uniform external fields. For an
electric field E, uniform over all space, the interaction eφ becomes −er · E,
where er is the electric-dipole-moment operator.

For a uniform magnetic field H the magnetic vector potential is not
uniquely defined. However, it is convenient to take A = 1

2H × r. In this
gauge ∇ · A = 0. Thus (p − eA/c)2/2m becomes
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p2

2m
− e

2mc
(r × p) · H +

e2

8mc2
(H × r)2 . (2.9)

The first term is the kinetic-energy term. The second term is a paramagnetic
term. Since r × p = �l is related to the electron’s orbital moment µl, by

µl =
e

2mc
r × p = − |e|�

2mc
l = −µBl , (2.10)

where

µB ≡ |e|�
2mc

is the Bohr magneton, this second term may be written as µBl ·H. The third
term is a diamagnetic term. When H is in the z direction, that is, H = Hẑ,
then this term reduces to (e2H2/8mc2)(x2 + y2). This gives, for the total
Hamiltonian of an electron in a uniform magnetic field,

H =
p2

2m
+ µB(l + σ) · H +

e2H2

8mc2
.(x2 + y2) + ζl · σ . (2.11)

2.2.2 The Electric Quadrupole Field

Let us now look into the potentials the electron sees as it moves around or past
a nucleus. If we assume that the electron remains outside the nuclear charge
and current distributions, we may expand |r − rn|−1 in spherical harmonics,
which results in a multipole expansion.

Let us first consider the charge distribution. If ρ(rn) is the charge density
at a point rn inside the nucleus, the electrostatic potential becomes

φ(r) =

∫

drn

ρ(rn)

|r − rn|

= 4π
∞
∑

l=0

l
∑

m=−l

Y m
l (θ, ϕ)

(2l + 1)rl+1

∫

drnρ(rn)Y m∗

l (θn, ϕn)rl
n , (2.12)

where Y m
l (θ, ϕ) is the sperical harmonic (see Table 2.1). Writing out the first

few terms explicitly, we have

φ(r) = 4π
Y 0

0 (θ, ϕ)

r

∫

drnρ(rn)Y 0∗

0 (θn, ϕn)

+4π

1
∑

m=−1

Y m
1 (θ, ϕ)

3r2

∫

drnρ(rn)rnY m∗

1 (θn, ϕn)

+4π

2
∑

m=−2

Y m
2 (θ, ϕ)

5r3

∫

drnρ(rn)r2
nY m∗

2 (θn, ϕn) + . . . . (2.13)
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Table 2.1. Spherical Harmonics

Y 0
0

√

(1/4π)
√

(1/4π)

Y −1

1

√

(3/8π) sin θe−iϕ
√

(3/8π)(x − iy)/r

Y 0
1

√

(3/4π) cos θ
√

(3/4π)(z/r)

Y 1
1 −

√

(3/8π) sin θeiϕ
−

√

(3/8π)(x + iy)/r

Y −2

2

√

(15/32π) sin2 θe−2iϕ
√

(15/32π)[(x − iy)2/r2]

Y −1

2

√

(15/8π) sin θ cos θe−iϕ
√

(15/8π)[z(x − iy)/r2]

Y 0
2

√

(5/16π)(3 cos2 θ − 1)
√

(5/16π)[(3z2
− r2)/r2]

Y 1
2 −

√

(15/8π) sin θ cos θeiϕ
−

√

(15/8π)[z(x + iy)/r2]

Y 2
2

√

(15/32π) sin2 θe2iϕ
√

(15/32π)[(x + iy)2/r2]

Since Y 0
0 (θ, ϕ) = 1/

√
4π, the first term becomes

1

r

∫

drnρ(rn) =
Ze

r
, (2.14)

which is just the field arising from a point charge at the origin. We can make
use of the spherical-harmonic addition theorem

4π

2l + 1

l
∑

m=−l

Y m∗

l (θ1, ϕ1)Y
m
l (θ2, ϕ2) = Pl(cos θ12) (2.15)

to write the second term as

r̂

r2
·
∫

drnρ(rn)rn . (2.16)

The integral is the electric-dipole-moment operator of the nucleus. If the
nuclear states have definite parity, the diagonal matrix elements of this
operator vanish by symmetry. The third term is the quadrupole term.

Since we shall eventually be interested in computing matrix elements of the
quadrupole term, as well as various other similar operators, it is appropriate to
digress for a moment to develop a technique known as operator equivalents,
for rewriting such operators in a form which greatly facilitates the evalua-
tion of their matrix elements. This technique is based on the transformation
properties of these operators.

Operator Equivalents. Suppose we consider a rotation of our coordinate sys-
tem through some angle θ about an axis defined by n̂. Let this rotation be
defined by a linear operator R which rotates any vector r into Rr. If θ is
regarded as infinitesimally small, then
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Rr = r + θn̂ × r . (2.17)

Under such a rotation a scalar wave function ψ(r) is transformed into a new
wave function ψ′(Rr). If the system is invariant under rotation, then

ψ′(Rr) = ψ(r) . (2.18)

This change may be characterized by a transformation UR(θ) defined by

UR(θ)ψ(r) = ψ′(r) . (2.19)

Using (2.18) this becomes

UR(θ)ψ(r) = ψ(R−1r) . (2.20)

Expanding the right side,

UR(θ)ψ(r) = ψ(r − θn̂ × r) ≃ ψ(r) − (θn̂ × r) · ∇ψ(r)

≃ ψ(r) − i

�
(θn̂ × r) · pψ(r) .

Therefore
UR(θ) ≃ 1 − iθn̂ · l , (2.21)

where l is the orbital angular momentum in units of �. For this reason we
refer to l as the “generator” of infinitesimal rotations. This argument may be
extended to finite rotations with the result

UR(θ) = exp(−iθn̂ · l) . (2.22)

Since the spinor wave function associated with the Dirac equation is defined
with respect to a definite axis, a rotation in ordinary three-dimensional space
will also transform the components of this wave function. Rotation in the
complex two-dimensional space is described by 2×2 complex unitary matrices.
For example, the matrix for a clockwise rotation of θ about the z-axis is [13],
p. 109







cos
θ

2
− i sin

θ

2
0

0 cos
θ

2
+ i sin

θ

2






= 1 cos

θ

2
− iσz sin

θ

2
.

Since σ2n
z = 1 and σ2n+1

z = σz, where n is an integer, this matrix expression
is equivalent to exp(− 1

2 iθσz) which may be generalized to

exp(−iθn̂ · σ/2) (2.23)

Since σ/2 is therefore the generator for rotations in spinor space we identify it
as the spin angular momentum, s. The total angular momentum then becomes
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j = l + s

and the transformation generalizes to

UR(θ) = exp(−iθn̂ · j) . (2.24)

The orbital part, l, acts on the r-dependence of the wave function while
s rearranges the components of the wave function.

For many-electron systems, such as atoms or ions, the total angular
momentum is the vector sum of the angular momenta of the individual
electrons,

L =
∑

i

li , S =
∑

i

si (2.25)

and J = L + S.
Let |JM〉 be an eigenfunction of J2 and Jz. (Since J2 commutes with Jz

one can form a complete set of common eigenfunctions of J2 and Jz.) Then

UR(θ)|JM〉 = exp(−iθn̂ · J)|JM〉 . (2.26)

Inserting the identity in the form

∑

M ′

|JM ′〉〈JM ′| = 1

on the right gives

UR(θ)|JM〉 =
∑

M ′

〈JM ′| exp(−iθn̂ · J)|JM〉|JM ′〉 =
∑

M ′

Dj
MM ′(αβγ)|JM ′〉 .

(2.27)
Thus the rotation operator transforms the function |JM〉 into a linear

combination of the states |JM ′〉 whose coefficients are the matrix elements
of the rotation operator itself, DJ

MM ′(αβγ), where α, β, and γ are the Euler
angles that specify the rotation.

Under the rotation UR an operator O is transformed into UROU−1
R . If the

operator O consists of 2J + 1 functions TJM (M = −J, −J + 1, . . . , J), and if

it transforms according to

URTJMU−1
R =

∑

M ′

DJ
MM ′(αβγ)TJM ′ , (2.28)

then it is called an irreducible tensor operator of rank J . This may seem
a rather restrictive definition. However, it turns out that many operators
encountered in physical situations are, in fact, tensor operators. For example,
a vector is a tensor of rank 1; moments of inertia and quadrupole moments
are tensors of rank 2. An example of an operator which may not be a tensor
is the density operator discussed earlier.

Tensors have their own algebra, including various theorems. One of the
most useful of these for our purposes is the Wigner–Eckart theorem. This states
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that the matrix element of a tensor operator may be factored into a part which
involves the projection quantum numbers and is independent of the tensor
itself, and a part not involving the projection quantum numbers, called the
reduced matrix element. The first part is, in fact, just the Clebsch–Gordan

coefficient encountered in the coupling of angular momenta. Thus we have

〈J ′M ′|TJ ′′M ′′ |JM〉 = C(JJ ′′J ′;MM ′′M ′)〈J ′‖TJ ′′‖J〉 , (2.29)

where C(JJ ′′J ′;MM ′′M ′) is the Clebsch-Gordan coefficient and 〈J ′‖TJ ′′‖J〉
is the reduced matrix element. Notice that if T ′ is also a tensor operator of the
same rank as T , then the matrix elements of T are proportional to those of T ′.
This result has immense practical application to our magnetic Hamiltonian.

Let us return now to the quadrupole terms in φ(r). Writing the nuclear
charge density as

ρ(rn) = e
∑

i

δ(rn − ri) , (2.30)

where ri is the coordinate of a proton, the quadrapole moment QM
2 becomes

QM
2 =

√

4π

5

∑

i

er2
i Y M

2 (θi, ϕi) . (2.31)

Since the quadrupole moment operators QM
2 are proportional to the spherical

harmonics, they are tensor operators of rank 2. We can also form a tensor
of rank 2 from the components of the total nuclear angular momentum I.
Thus if

T+1
2 = Q+1

2 =

√
6

4

∑

i

zi(xi + iyi) , (2.32)

this suggests that we form

(T ′)+1
2 =

√
6

4
(IzI

+ + I+Iz) . (2.33)

Notice that (2.33) is written in the symmetrized form. The reason for this
is that the coordinates entering (2.32) commute with each other, whereas
the angular momenta do not. Therefore, in order to preserve this symmetry,
we must symmetrize the operator equivalent. By the Wigner–Eckart theorem,
the matrix elements of these two operators must be proportional. Thus

〈IM ′
∣

∣Q+1
2

∣

∣ IM〉 = α〈IM ′|
√

6

4
(IzI

+ + I+Iz)|IM〉 , (2.34)

or,

〈IM ′
∣

∣Q+1
2

∣

∣ IM〉 = α

√
6

4
(2M + 1)

√

(I − M)(I + M + 1)δM ′,M+1 . (2.35)
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It is customary to define the particular matrix element 〈II|Q0
2|II〉 as eQ. The

proportionality constant α then becomes eQ/I(2I − 1).
As long as we remain within a manifold in which I is a good quantum

number, we may also equate the operators themselves. Thus

Q+1
2 =

eQ

I(2I − 1)

√
6

4
(IzI

+ + I+Iz) (2.36)

with similar expressions for the other operators. The corresponding term in
the quadrupole potential is therefore

−
√

4π

5

Y −1
2

r3

eQ

I(2I − 1)

√
6

4
(IzI

+ + I+Iz) . (2.37)

It is obvious that we could now write the electron part in terms of the total
orbital angular momentum of the electron state [8, 9]. Thus,

eφ(r) = −Ze2

r
+ e2Qξ[3(l · I)2 + 3/2(l · I) − l(l + 1)I(I + 1)] ,

where ξ is a constant that is proportional to the reduced matrix element
of the electronic angular momentum. Notice that an s-state electron is not
affected by the quadrupole field of the nucleus. The quadrupole field is, in
general, small compared with other fields acting on the electron. From the
point of view of the nucleus, however, this interaction is very important. If
the electron is in a nondegenerate state characterized by the orbital quantum
numbers l,ml, and the coordinates are chosen to lie along the principal axes
of the tensor lµlν , then the nuclear Hamiltonian becomes

HQ =
e2qQ

4I(2I − 1)

[

3I2
z − I(I − 1) +

1

2
η(I2

+ + I2
−)

]

, (2.38)

where

q = ξ〈l2z〉 and η =
(〈l2x〉 − 〈l2y〉)

〈l2z〉
.

The same expression also characterizes the interaction with a more general
surrounding charge distribution. In this case q is proportional to the electric
field gradient produced by this charge distribution.

2.2.3 The Magnetic Dipole (Hyperfine) Field

The vector potential arising from the nuclear currents may also be expanded
to yield
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A(r) =

∫

drn

ρ(rn)v(rn)

c |r − rn|

=
1

cr

∫

drnρ(rn)v(rn) +
1

2cr3

∫

drnρ(rn)

×{(r · rn)v(rn) + [r · v(rn)]rn}

− r

r3
× 1

2c

∫

drnρ(rn)[rn × v(rn)] + . . . . (2.39)

If the current distribution is stationary with respect to the angular-momentum
axis, then the first two terms vanish, leaving only the third. The integral in
this term is the nuclear magnetic dipole moment µI , which is related to the
nuclear angular momentum by

µI = gNµNI = γN�I ,

where µN is the nuclear magneton, γN is the nuclear gyromagnetic ratio, and
gN is the nuclear g value.

Notice that the nuclear angular momentum I is in units of �. Thus

A(r) = µI ×
r

r3
. (2.40)

Substituting this into the expression

1

2m

(

p − e

c
A
)2

− e�

2mc
σ · ∇ × A (2.41)

and recognizing that ∇ · A(r) = 0, we obtain

p2

2m
− e

mc

(µI × r) · p
r3

+
e�

2mc
σ ·
[

µI

r3
− 3

(r · µI)r

r5

]

. (2.42)

Interchanging the dot and cross products in the second term gives the orbital

hyperfine interaction

2µB

µI · ℓ
r3

. (2.43)

The last term in (2.42) containing the square brackets is the dipolar hyperfine

interaction.
If the electron is in an s state, then the matrix elements of the orbital

hyperfine interaction will clearly vanish. Similarly, the matrix elements of
the dipolar hyperfine interaction also vanish for an s-state electron. However,
there is an additional interaction for s-state electrons that is not included in
expansion (2.39), since it is valid only for charge distributions which vanish
at the nucleus. To obtain this additional interaction we consider the matrix
element of the hyperfine interaction for an electron orbital state ψ(r):
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− e�

2mc

∫

all space

drψ∗(r)σ · ∇ × A(r)ψ(r)

= − e�

2mc

∫

r<R

drψ∗(r)σ · ∇ × A(r)ψ(r)

− e�

2mc

∫

r>R

drψ∗(r)σ · ∇ × A(r)ψ(r) . (2.44)

The radius R defines a sphere which encloses the nucleus. Outside this sphere
A(r) has the form (µI × r)/r3. The second term in (2.44) gives the dipo-
lar hyperfine interaction derived previously. The first term is the additional
interaction, which may be rewritten as

− e�

2mc

∫

r<R

dr∇ · (A × σ)|ψ(r)|2 = − e�

2mc
σ ·
∫

dS × A|ψ(r)|2 . (2.45)

Because the sphere of integration has been chosen to lie outside the nucleus,
A(r) has the form (µI × r)/R3. Since ψ(r) is essentially constant over this
surface and is equal to ψ(0), the interaction becomes

− e�

2mc
σ ·
∫

r × (µI × r)

R2
dΩ|ψ(0)|2 = −8π

3

e�

2mc
σ · µI |ψ(0)|2

=
16π

3
gNµBµNI · σ|ψ(0)|2 . (2.46)

This is the contact hyperfine interaction, often written as the operator

(8π/3)gNµBµNI · σδ(r) .

Combining these results gives us the total hyperfine interaction,

Hhyper = 2gNµBµN

l · I
r3

− gNµBµNσ ·
[

I

r3
− 3

(r · I)r

r5

]

+
8π

3
gNµBµNσ · Iδ(r) . (2.47)

The Hamiltonian (2.11) plus the interactions (2.38), (2.47) determine the
behavior of a single electron in the presence of a nucleus.

2.2.4 Other Electrons on the Same Ion

Let us now consider the effect of other electrons. One of the most important
sources of the electric field felt by an ionic electron is the Coulomb field arising
from the other electrons on the same ion,

φ(r) =
∑

i

e

|r − ri|
. (2.48)
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In ionic materials this interaction leads to the term levels (the determination
of these many-electron states in terms of their Coulomb integrals is discussed
in [10]). In itinerant-electron materials it is often assumed that the electrons
experience a Coulomb repulsion only if they both happen to be in the same
ionic cell. We shall consider the corresponding Hamiltonian for this situation
later.

2.2.5 Crystalline Electric Fields

The Coulomb interactions between each electron and all the charges external
to the ion are described by the electrostatic potential V (r). In the case of iron-
group ions the magnetic electrons (the 3d electrons) are outermost and hence
are strongly affected by such a potential. In the case of rare-earth ions the
magnetic 4f electrons are shielded by the 5s25p6 shells and are less affected.

Since the charge distribution associated with neighboring ions may overlap
that of the electron in question, the full treatment of this problem is very
complex. The external charge distributions of these neighboring ions are called
ligands, and their effects are computed by means of ligand field theory [11].
However, for our purposes, it will be sufficient to treat the neighboring ions as
point charges; the problem may then be handled by crystal field theory . The
advantage of using point charges is that V (r) satisfies Laplace’s equation and
may be expanded in spherical harmonics as

V (r, θ, ϕ) =
∑

L′

∑

M ′

AM ′

L′ rL′

Y M ′

L′ (θ, ϕ) . (2.49)

The number of terms that need be considered is greatly reduced, for the fol-
lowing reasons. Suppose we consider an iron-group ion in a crystal field. Then
we shall eventually be interested in matrix elements of the form

∫

χ∗ V ψdτ ,
where χ and ψ are d-electron wave functions. Since the density χ∗ψ, when
expanded in spherical harmonics will not contain terms with L′ > 4, the in-
tegrals with L′ > 4 will vanish by orthogonality of the spherical harmonics.
Similarly, the integral vanishes for all terms in V which have L′ odd. The
term for L′ = 0 is usually dropped because it is an additive constant. If we
are considering several 3d electrons within a term, then L′

max is determined by
the L value of this term (for example, L′ ≤ 6 for an F -state ion, i.e., L′ ≤ 2L).

The potential energy of a charge q′ at (r, θ, ϕ), in a potential due to charges
q at a distance d from the origin and arranged in a cubic coordination, is

Vc(r, θ, ϕ) = D′
4

{

Y 0
4 (θ, ϕ) +

√

5

14

[

Y 4
4 (θ, ϕ) + Y −4

4 (θ, ϕ)
]

}

+D′
6

{

Y 0
6 (θ, ϕ) −

√

7

2

[

Y 4
6 (θ, ϕ) + Y −4

6 (θ, ϕ)
]

}

, (2.50)
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where, for example, D′
4 = +7

3

√
πq′r4/d5 for sixfold coordination. The coeffi-

cients in such expansions have been tabulated by Hutchings [12]. The potential
may also be expressed in terms of cartesian coordinates (see Table 2.1). Thus
the above potential may be written as

Vc(x, y, z) = C4

[

(x4 + y4 + z4) − 3

5
r4

]

+ C6

[

(x6 + y6 + z6) (2.51)

+
1 5

4
(x2y4 + x2z4 + y2x4 + y2z4 + z2x4 + z2y4) − 15

14
r6

]

,

where C4 = +3 5
4 qq′/d5 for sixfold coordination.

We are now faced with the problem of calculating the matrix elements of
this potential. This is easily accomplished by the operator-equivalent method,
which makes use of the fact that the matrix elements of operators involving
x, y, and z within a given L or J manifold are proportional to those of Lx, Ly,
and Lz or Jx, Jy, and Jz. As pointed out earlier, the fact that the angular-
momentum operators do not commute necessitates some care in constructing
the operator equivalents. Fortunately there are tables for these (a good source
is [12]). For example, within a manifold where L is constant the sum of the
potential energies of all the electrons contributing to L is

∑

(

x4 + y4 + z4 − 3

5
r4

)

⇒ βr4

8

[

35L4
z − 30L(L + 1)L2

z + 25L2
z − 6L(L + 1) + 3L2(L + 1)2

]

+
βr4

8

[

(L+)4 + (L−)4
]

≡ βr4

20
O0

4 +
βr4

4
O4

4 = B0
4O0

4 + B4
4O4

4 , (2.52)

where r4 is the average value of the fourth power of the electron radius. The
operators Om

n appear frequently in the literature. The ground state β is a
constant which depends on the term; for a 2D or a 5D term β = 2

6 3 .
Consider a single 3d electron. This has the term 2D, which is fivefold or-

bitally degenerate, with states 2D(Lz, Sz). The matrix elements of Vc are [12]

2D(2) 2D(1) 2D(0) 2D(−1) 2D(−2)

βr4

20



















12 0 0 0 60

0 −48 0 0 0

0 0 72 0 0

0 0 0 −48 0

60 0 0 0 12



















.
(2.53)
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The eigenvalues and eigenvectors are easily found to be

Energy Eigenfunctions

1 2

5
βr4



















2D(1, Sz)
2D(−1, Sz)

1√
2
[2D(2, Sz) − 2D(−2, Sz)]

−18

5
βr4











2D(0, Sz)

1√
2
[2D(2, Sz) + 2D(−2, Sz)] .

The quantity 6β is often written as ∆. Therefore we find that the 2D term is
split into two states separated by C4r4∆. Notice that C4 can be positive or
negative, depending on the coordination. This is illustrated in Fig. 2.1.

The nature of such splittings obviously depends on the symmetry of the
crystal field. For this reason group theory is a powerful tool in determining
the degeneracies associated with various symmetries. Group theory as applied
to crystal wave functions is discussed fully elsewhere [13], Chap. 4, but it is
worth our while to digress again briefly to introduce some of the group-theory
terminology and notation which will enter our discussions from time to time.

Symmetry Representations. The symmetry of a system is generally specified
by those operations which leave its physical appearance unchanged. For exam-
ple, the symmetry operations which leave an equilateral triangle unchanged
are listed in Table 2.2. A collection of symmetry operations that satisfies cer-
tain conditions is called a group. In order to take advantage of the powerful

TD

(a) (b)

2

E

D

T 2

E

--
-

-

-

-

-

-

-

-

-

--

-

-

-

Fig. 2.1. Splitting of a D state in a cubic crystal field for (a) sixfold coordination
and (b) eightfold coordination
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Table 2.2. Symmetry operations associated with an equilateral triangle

E = identity

CA
2 = rotation of π around the A-axis

CB
2 = rotation of π around the B-axis

CC
2 = rotation of π around the C-axis

Cz
3 = rotation of 2π/3 around the z-axis

(Cz
3 )2 = rotation of 4π/3 around the z-axis

3

A

B

2

C

1

theorems associated with group theory we always work with those symme-
try operations which do, in fact, constitute a group. These operations may
be specifically represented by matrices which describe how a coordinate point

transforms under the particular symmetry operation. Thus, if r represents a
rotation and t represents a translation, the most general coordinate transfor-
mation is x′ = rx + t. Such a collection of operations is called a space group.
The rotational part, obtained by setting t = 0, itself forms a group, called the
point group. When we are dealing with noninteracting ions, the point group is
sufficient to characterize the properties of the system. However, for interacting
systems the full space group must be employed. Fortunately, since the point
groups in a crystal must be compatible with translational symmetry, there
are only 32 such groups [13], p. 55. Our equilateral triangle is characterized
by the point group labeled D3 in the so-called Schöflies notation, or 32 in the
“international” notation.

Now, let us consider a function whose form depends on the arrangement of
the system. For example, suppose that three protons are located at the vertices
of an equilateral triangle. The energy of an electron in such an environment
depends on the positions of the protons, but this energy is unchanged under
any permutation of the protons. Notice that there are 3!, or six, such permuta-
tions. These are just the result of the six symmetry operations which leave the
triangle invariant. If a figure is defined by some arrangement of identitical par-
ticles, the operations which leave it invariant also leave the interaction energy
between these two particles and other particles invariant. Thus it is conve-
nient to introduce a new group, isomorphic to the coordinate-transformations
group, in which the group elements are operators which operate on functions

rather than on coordinates. These operators are defined by

PRf(x) ≡ f(r−1x) . (2.54)

The particular function with which we shall be concerned is the energy in its
operator form, the Hamiltonian H. Those symmetry operations which leave
the Hamiltonian invariant comprise the “group of the Schrödinger equation”.
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If PR leaves H invariant, then it must commute with H. Therefore

PRHψn = HPRψn = EnPRψn . (2.55)

Thus any function PRψn obtained by operating on an eigenfunction ψn with
a symmetry operator of the group of the Schrödinger equation will also be
an eigenfunction having the same energy. Suppose that the state n is ln-fold
degnerate. Then the function PRψn must be a linear combination of ln ortho-

normal eigenfunctions, which we shall denote ψ
(n)
µ (µ = 1, . . . , ln). Therefore

PRψ(n)
µ =

l
∑

ν=1

Γ (n)(r)µνψ(n)
ν . (2.56)

The transformation coefficients constitute a set of matrices which form an
irreducible representation of the group of the Schrödinger equation. Further-
more, we see that the nth representation is associated with the nth eigenstate,
and the dimensionality of the representation is equal to the degeneracy of this
eigenstate. This representation is irreducible, since there is always an opera-
tor in the group that will transform each function into any other function. If
this were not true, we could construct smaller sets of states which would, in
general, have different eigenvalues, contradicting our original hypothesis.

Because of the relation (2.56), we speak of the ψ(n) as “transforming ac-
cording to Γ (n)”. For this reason energy eigenstates are labeled by their ir-
reducible representations. Also, since the representations are generated from

the eigenfunctions, we say that the ln degenerate eigenfunctions ψ
(n)
µ form a

basis for an ln-dimensional representation Γ (n) of the group of the Schrödinger
equation.

The number and nature of the irreducible representations associated with
the various symmetry groups have all been tabulated in what is known as a
character table. The character χn(r) associated with the operation r belonging
to the nth irreducible representation is merely the trace of the matrix of that
representation, that is,

χn(r) =
∑

µ

Γ (n)(r)µµ . (2.57)

One of the powerful features of group theory is that it enables us to determine
the irreducible representations and all their characters without ever having to
know specifically the basis functions. The character table for the equilateral-
triangle symmetry group D3 is given in Table 2.3. To see what this character
table implies, let us suppose that we have a single electron, bound, say, to some
ionic core giving rise to certain eigenstates. Since this system has complete
rotational symmetry, these states are labeled by the familiar s, p, d, etc. Let us
surround the system by three protons located at the vertices of an equilateral
triangle. The symmetry of this system is D3. The character table for D3 tells
us that the eigenfunctions of the electron are now labeled by the irreducible
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Table 2.3. Character table for the point group D3

Symmetry Group Operations

D3 E 2C3 3C′

3

Irreducible

representations Characters

A1 1 1 1

A2 1 1 −1

E 2 −1 0

representations A1, A2, or E. The character associated with the identity oper-
ation, E, tells us the degeneracy of the various representations. For example,
A1 and A2 are nondegenerate states, and E is doubly degenerate.

Exactly how the original states decompose into the new types of states
depends on the original states themselves and on the symmetry group char-
acterizing the environment. Fortunately, such decompositions have been tab-
ulated for a great number of situations. For example, in Fig. 2.1 we saw that
a D state, when exposed to a cubic crystal field, splits into a doublet labeled
by E and a triplet labeled by T2. Group theory, however, does not tell us the
ordering of the states or their relative separations. Such specific information
can be obtained only by doing a calculation, as we did at the beginning of
this section.

Quenching. At this point it is convenient to introduce a general property of
angular momentum. This might be stated as a theorem:

The matrix element of the orbital angular momentum between non-degenerate

states has an arbitrary phase. In particular, it may be pure real or pure imagi-

nary.

To prove this let us consider the time-reversal operator T acting on a state
ψ [13], p. 141. If we neglect the spin, then Tψ = ψ∗. Furthermore, if the
Hamiltonian of the system is Hermitian, then ψ∗ has the same eigenvalue
as ψ, but if ψ is nondegenerate, then ψ and ψ∗ must be linearly dependent.
That is, ψ∗ = cψ, where c is a coefficient of proportionality. Operating on this
relation with T gives ψ = |c|2ψ which requires that |c|2 = 1 or c = eiϕ, where
ϕ is a real quantity.

Now consider the matrix element 〈n|L|m〉. Inserting the identity oper-
ator T−1T , we may write this as 〈n|T−1TLT−1T |m〉. Under time reversal
the angular momentum changes sign, TLT−1 = −L. Also, since T satisfies
〈n|T−1|m〉 = 〈Tn|m〉∗, we obtain

〈n|L|m〉 = − exp[i(ϕn − ϕm)]〈n|L|m〉∗ .

Since the phases are arbitrary we could, for example, choose ϕn −ϕm = 0, in
which case this matrix element would be the negative of its complex conjugate,
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which would make it pure imaginary. If ϕn−ϕm = π/2, then it would be pure
real.

This theorem has an important corollary:

The expectation value of L for any nondegenerate state is 0.

In the theorem, if |m〉 = |n〉, then 〈n|L|n〉 must be pure imaginary. But
〈n|L|n〉 is a physical observable. Therefore it must be 0.

Thus if the crystal field has sufficiently low symmetry to remove all the
orbital degeneracy, then, to lowest order, the orbital angular momentum is 0,
and we say that the crystal field has completely quenched it. For this reason
the static susceptibility of iron-group salts is found experimentally to arise
predominantly from the spin.

2.2.6 Dipole–Dipole Interaction

The magnetic neighbors surrounding a given ion will contribute to the vec-
tor potential a term similar to that which we found for the electron-nucleus
magnetic coupling, (2.42). If the ions have moments µi, the dipole-dipole
interaction has the form

Hdip =
∑

i,j �=
i

j

1

r3
ij

[µi · µj − 3(µi · r̂ij)(µj · r̂ij)] . (2.58)

It is convenient to separate this into various terms, the meaning of which will
become evident later. Assuming the moments arise from spin, µi = gµBSi,
and (2.58) becomes

Hdip = g2µ2
B

∑

i>j

{

−3 cos2 θij − 1

r3
ij

Sz
i Sz

j

+
3 cos2 θij − 1

4r3
ij

(S+
i S−

j + S−
i S+

j )

−3

2

sin θij cos θij exp(−iϕij)

r3
ij

(Sz
i S+

j + S+
i Sz

j )

−3

2

sin θij cos θij exp(−iϕij)

r3
ij

(Sz
i S−

j + S−
i Sz

j )

−3

2

sin2 θij

r3
ij

[exp(−2iϕij)S
+
i S+

j + exp(2iϕij)S
−
i S−

j ]

}

, (2.59)

where θij and ϕij are the angles that rij makes with the fixed coordinate
system.
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2.2.7 Direct Exchange

The exchange energy is the contribution to the interaction energy of a system
of electrons which arises from the use of antisymmetrized wave functions, as
opposed to single products of one-electron wave functions. Under certain con-
ditions the same effect may be achieved with single-product wave functions if
an exchange-interaction term is added to the Hamiltonian. This effect was dis-
covered simultaneously and independently by Dirac and Heisenberg in 1926.
Since then a great deal of work has been done on this subject, particularly in
developing the appropriate Hamiltonian [14]. In this section we shall discuss
the origin of exchange and indicate the approximations under which it may
be represented by an effective interaction Hamiltonian.

Let us begin by considering two electrons interacting with each other and a
fixed positive point charge Ze. Let us assume that we know the eigenfunctions
of the one-electron Hamiltonian H0(r,σ). For the time being let us assume
that this does not include the spin-orbit interaction. Then H0(r,σ) = H0(r)
and we may write the eigenfunctions as products of an orbital function ϕn(r)
and a spinor ηµ(σ). We shall consider the modifications introduced by the
spin-orbit interaction later.

The two-electron Hamiltonian is

H = H0(r1) + H0(r2) +
e2

|r1 − r2|
. (2.60)

Let us assume that the electron-electron interaction is, on average, smaller
than H0, so that it may be treated by perturbation theory. We must now
determine what functions to use as the basis for computing the matrix
elements of the electron-electron interaction. The fact that the Hamiltonian
without the electron-electron interaction is separable suggests that we try
product wave functions. Thus, if electron 1 is in an orbital state n with spin
up and electron 2 is in an orbital state m, also with spin up, we might try
ϕn(r1)α(σ1)ϕm(r2)α(σ2), where α is the spin-up spinor. However, the Pauli
exclusion principle requires that the wave functions be antisymmetric with
respect to particle interchanges. This condition may be satisfied by writing
the wave function as a normalized Slater determinant. If the single-electron
wave functions are orthogonal, the appropriate determinantal wave function is

1√
2

∣

∣

∣

∣

∣

ϕn(r1)α(σ1) ϕn(r2)α(σ2)

ϕm(r1)α(σ1) ϕm(r2)α(σ2)

∣

∣

∣

∣

∣

. (2.61)

Since there are an infinite number of orbital states, we could construct an
infinite number of such Slater determinants. The general wave function would
be a linear combination of such determinants. However, if the electron-electron
interaction is small, we may neglect this admixture of other orbital states.
In particular, let us assume that electron 1 has a low-lying nondegenerate
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orbital state ϕa with energy Ea and electron 2 has a similar low-lying non-
degenerate orbital state ϕb with energy Eb. If both spin functions are up, the
determinantal wave function becomes

ψ1 =
1√
2

∣

∣

∣

∣

∣

ϕa(r1)α(σ1) ϕa(r2)α(σ2)

ϕb(r1)α(σ1) ϕb(r2)α(σ2)

∣

∣

∣

∣

∣

. (2.62)

If the spin function associated with orbital a is down, then

ψ2 =
1√
2

∣

∣

∣

∣

∣

ϕa(r1)β(σ1) ϕa(r2)β(σ2)

ϕb(r1)α(σ1) ϕb(r2)α(σ2)

∣

∣

∣

∣

∣

. (2.63)

There are two additional possible spin configurations which lead to wave func-
tions ψ3 and ψ4. These four functions form a complete orthonormal set and
therefore constitute an appropriate bais with which to evaluate the matrix
elements of H. The result is

H =

















Ea + Eb + Kab − Jab 0 0 0

0 Ea + Eb + Kab −Jab 0

0 −Jab Ea + Eb + Kab 0

0 0 0 Ea + Eb + Kab − Jab

















,

(2.64)

where

Kab =

∫∫

dr1dr2
e2

r12
|ϕa(r1)|2|ϕb(r2)|2 (2.65)

and

Jab =

∫∫

dr1dr2ϕ
∗
a(r1)ϕ

∗
b(r2)

e2

r12
ϕb(r1)ϕa(r2) . (2.66)

Diagonalizing this matrix gives a singlet with energy

Es = Ea + Eb + Kab + Jab (2.67)

and a triplet with energy

Et = Ea + Eb + Kab − Jab . (2.68)

Since Jab is the self-energy of the charge distribution eϕ∗
a(r)ϕb(r), it is positive

definite. Therefore the triplet always has a lower energy than the singlet. This
is the origin of Hund’s rule, which says that the ground state of an atom has
maximum multiplicity.

Dirac noticed that the eigenvalues (2.67), (2.68) could be obtained with a
basis consisting only of products of spin functions if an exchange interaction

were added to the Hamiltonian. To obtain the form of this effective interaction
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term we notice that just as any 2 × 2 matrix may be expressed as a linear
combination of Pauli matrices plus the unit matrix, any 4 × 4 matrix may
be written as a quadratic function of direct products of Pauli matrices [13],
p. 320. For example, if

σ1x =

[

0 1
1 0

]

and σ2x =

[

0 1
1 0

]

, (2.69)

then

σ1x ⊗ σ2x =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









. (2.70)

We are particularly interested in that quadratic form which gives three equal
eigenvalues. Such a form is

σ1 · σ2 =









1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1









. (2.71)

Therefore the Hamiltonian which will produce in a spinor basis the same
eigenvalues as (2.52) evaluated in a fully antisymmetrized basis is

H =
1

4
(Es + Et) −

1

4
(Es − Et)σ1 · σ2 = const. − 1

4
Jσ1 · σ2 . (2.72)

Thus the exchange interaction, which is a purely electrostatic effect, may be
expressed as a spin-spin interaction. The exchange parameter J is Es −Et. If
J is positive, we say that the interaction is ferromagnetic.

In obtaining the exchange interaction (2.72) we have made two important
assumptions. The first was that we could restrict ourselves to a certain subset
of nondegenerate orbital states. There is no real justification for this, as the
Coulomb interaction does, in fact, couple different orbital states. We shall
see this more clearly in our discussion of exchange in the N -electron system.
The second assumption was that the orbital functions were orthogonal. When
we are dealing with wave functions that have a common origin, as in an atom,
this is usually the case. However, as soon as we begin talking about electrons
centered at different sites the problem becomes very complex.

The hydrogen molecule is perhaps the simplest example of such a two-
center problem. This was first considered by Heitler and London in 1927 [15].
In the limit of infinite separation we shall assume we have two neutral hydro-
gen atoms. The Hamiltonian for a single hydrogen atom located at ra is

H∞(r) = −�
2∇2

2m
− e2

|r − ra|
. (2.73)
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The corresponding orbital eigenfunctions are ϕ(r − ra) ≡ a(r). The Hamil-
tonian for the two-proton system is

H = −�
2∇2

1

2m
− �

2∇2
2

2m
− e2

|r1 − ra|
− e2

|r1 − rb|
− e2

|r2 − ra|
− e2

|r2 − rb|

+
e2

|r1 − r2|
+

e2

|ra − rb|
. (2.74)

Heitler and London assumed basis functions of the form (2.61) but rather than
taking eigenfunctions of noninteracting electrons in the field of two nuclei,
they took the eigenfunctions of isolated free atoms. Thus, if both electrons
are “up”,

ψ1 =
1√

2 − 2ℓ2

∣

∣

∣

∣

∣

a(1)α(1) a(2)α(2)

b(1)α(1) b(2)α(2)

∣

∣

∣

∣

∣

, (2.75)

where ℓ =
∫

dr a∗(r)b(r) is the overlap integral. If one spin is “up” and the
other “down” there are two Slater determinants

φ1 =

∣

∣

∣

∣

∣

a(1)α(1) a(2)α(2)

b(1)β(1) b(2)β(2)

∣

∣

∣

∣

∣

(2.76)

and

φ2 =

∣

∣

∣

∣

∣

a(1)β(1) a(2)β(2)

b(1)α(1) b(2)α(2)

∣

∣

∣

∣

∣

. (2.77)

Due to the overlap, these are not orthogonal, i.e.,

〈φ1|φ2〉 = −2ℓ2 . (2.78)

An orthogonalized pair of basis functions is

ψ2 =
1

2
√

1 − ℓ2
(φ1 + φ2) (2.79)

ψ3 =
1

2
√

1 − ℓ2
(φ1 − φ2) . (2.80)

The fourth basis function is identical to (2.75) with β in place of α. In this
basis the Hamiltonian matrix is, in fact, diagonal:

H =









Et 0 0 0

0 Et 0 0

0 0 Es 0

0 0 0 Et









, (2.81)
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where

Et = E0
a + E0

b +
e2

|ra − rb|
− K − ∆a − ∆b − 2ℓ∆ab − J

1 − ℓ2
, (2.82)

Es = E0
a + E0

b +
e2

|ra − rb|
+

K − ∆a − ∆b − 2ℓ∆ab + J

1 + ℓ2
. (2.83)

Here ∆a and ∆b represent shifts in the distant-atom eigenvalues, E0
a and E0

b ,
respectively, due to the other core. ∆ab is the interaction of the “overlap charge
density”, a(r)b(r), with a core, and

K =

∫∫

dr1dr2|a(r1)|2|b(r2)|2
e2

|r1 − r2|
(2.84)

and

J =

∫∫

dr1dr2 a∗(r1)b
∗(r2)

e2

|r1 − r2|
b(r1)a(r2) . (2.85)

The difference between the singlet and the triplet is

Es − Et = −2
(K − ∆a − ∆b − 2ℓ∆ab)ℓ

2 − J

1 − ℓ4
. (2.86)

Notice that this may be positive or negative, depending upon the relative sizes
of the various parameters. Thus, it is not obvious whether the ground state
will be ferromagnetic or antiferromagnetic. Actual evaluation shows that for
realistic separations the singlet lies lowest. As the nuclei are brought together,
and ℓ increases, the denominators in Et and Es cause Et to increase and Es

to decrease. Eventually, internuclear repulsion also causes Es to increase:

E t

E s

R ab

Equation (2.86) can be evaluated exactly for the case of hydrogenic wave
functions. It is found that for very large separations the triplet has lower
energy. This cannot be, for, as Herring pointed out, the lowest eigenvalue
of a semibounded Sturm–Liouville differential operator, such as (2.74), must
be free of nodes. This means it must always be a singlet. This would be a
good description of the chemical bond, but would not explain magnetism. The
problem arises from the oversimplified nature of the Heitler–London states.
The exchange coupling measures the rate at which two identifiable electrons
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exchange places by tunneling through the barrier separating them. In the
Heitler–London approximation this tunneling is uncorrelated. In reality, how-
ever, the two electrons will tend to avoid one another. This reduces the ampli-
tude of the wave function for configurations with both electrons close to the
internuclear line. Fortunately, however, (2.85) is a reasonably good approxi-
mation for separations generally encountered.

In considering more than two electrons we find that difficulties arise from
the nonorthogonality of the wave functions we have been using thus far. When
the Heitler–London method is applied to a very large system the nonorthog-
onality integrals enter the secular equation with high powers and lead to an
apparent divergence. This “nonorthogonality catastrophy” is a purely mathe-
matical difficulty [14], and Herring has reviewed various treatments that show
that even for large systems the energies and eigenstates are given by the
exchange interaction with exchange constants having the same values as for
a two-site system.

One approach to the problem of exchange among many sites is to give up
our well-defined but nonorthogonal functions and work with functions which
are orthogonal. An example of such a set of orthogonal functions are Wannier

functions. The Wannier function φnλ(r−ra) resembles the nth atomic orbital
with spin λ near the αth lattice site, but it falls off throughout the crystal in
such a way that it is orthogonal to similar functions centered at other sites.
Since the exchange interaction is essentially a quantum-statistical effect the
technique of second quantization discussed in Chap. 1 is very convenient for
obtaining the exchange Hamiltonian.

Let us consider N electrons reasonably localized on N lattice sites. The
Hamiltonian for such a system is

H =
∑

i

p2
i

2m
−
∑

i,a

Ze2

|ri − ra|
+

1

2

∑

i,j

e2

|ri − rj |
. (2.87)

In Chap. 1 we found that the prescription for second quantizing such a Hamil-
tonian entailed introducing a field operator which could be expanded in terms
of a complete set of single-particle wave functions. In this case the appropri-
ate set of functions are the Wannier functions. Thus the field operator (1.122)
becomes

ψ(r) =
∑

α,n,λ

φnλ(r − rα)anλ(rα) , (2.88)

where anλ(rα) annihilates an electron in orbital state n and spin state λ at
the lattice site α. The interaction part of the Hamiltonian (2.87) becomes

1

2

∑

α1,α2,α3,α4

n1,n2,n3,n4

λ1,λ2

〈α1n1;α2n2 |V |α3n3; α4n4〉

×a†
n1λ1

(rα1
)a†

n2λ2
(rα2

)an4λ2
(rα4

)an3λ1
(rα3

) . (2.89)
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Since the Wannier states are localized to within a unit cell, the main contri-
butions to (2.89) arise from those terms in which α3 = α1 and α4 = α2 or
α3 = α2 and α4 = α1. The remaining terms involve various orbital excitations
induced by the Coulomb interaction. These lead to off-diagonal exchange. Just
as in the two-electron case, we shall restrict each electron to a definite orbital
state. That is, we shall keep only those terms in which n3 = n1 and n4 = n2 or
n3 = n2 and n4 = n1. If, for simplicity, we also neglect orbital-transfer terms,
in which two electrons interchange orbital states, then (2.89) reduces to

1

2

∑

α,α′

n,n′

λ,λ′

[

〈α, n; α′, n′|V |α, n; α′, n′〉a†
nλ(rα)a†

n′λ′(rα′)an′λ′(rα′)anλ(Rα)

+〈α, n; α′, n′|V |α′, n′; α, n〉a†
nλ(rα)a†

n′λ′(rα′)αn,λ′(rα)an′λ(rα′)
]

.

(2.90)

The first term is called the direct term and the second is the exchange term.
Using the fermion anticommutation relation

{

a†
nλ(rα), an′λ′(rα′)

}

= δαα′δnn′δλλ′ , (2.91)

we may write the exchange term as

−1

2

∑

α,α′

n,n′

λ,λ′

Jnn′(rα, rα′)a†
nλ(rα)anλ′(rα)a†

n′λ′(rα′)an′λ(rα′) . (2.92)

When the spin sum is expanded, we obtain four terms. These may be written
in a particularly revealing way by noting the following. First of all, if we allow
only one electron to occupy each orbital, then

Nn↑(rα) + Nn↓(rα) = 1 , (2.93)

where Nnλ(rα) = a†
nλ(rα)anλ(rα) is the number operator associated with the

nth orbital with spin λ at the site α. We also have

Nn↑(rα) − Nn↓(rα) = σz(rα) . (2.94)

Combining these two relations gives

Nn↑(rα)Nn′↑(rα′) + Nn′↓(rα)Nn′↓(rα′) =
1

2
σz(rα)σz(rα′) +

1

2
. (2.95)

We also note that

a†
n↑(rα)an↓(rα) =

1

2
σ+(rα) (2.96)
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and

a†
n↓(rα)an↑(rα) =

1

2
σ−(rα) . (2.97)

With these results the exchange interaction (2.92) becomes

∑

αα′

nn′

Jnn′(rα, rα′)

[

1

4
+

1

4
σ(rα) · σ(rα′)

]

. (2.98)

This is the many-electron generalization of our earlier result for two electrons.
Since the wave functions used in Jnn′ are orthogonal, this exchange is always
ferromagnetic. In the next section on superexchange we shall see that when
we allow for the fact that an electron can hop onto a neighboring site giving
it a double occupancy, the result is an exchange of the form (2.98) but with
an antiferromagnetic coupling.

In most practical situations we do not have just N electrons each localized
on one of N lattice sites, but rather Nh electrons, where h is the number of
unpaired electrons on each ion. If these h electrons all have the same exchange
integrals with all the other electrons, then the interaction may be expressed
in terms of the total ionic spin,

Hex = −
∑

α,α′

n,n′

Jnn′(rα, rα′)

[

1

4
+ S(rα) · S(rα′)

]

. (2.99)

As Van Vleck has pointed out, this form is also valid if the unfilled shells of
each ion are half full and the atom is in its state of maximum multiplicity [16].
Such a situation is always true for S-state ions but may also arise as a result
of quenching by crystal fields. We shall consider an example of this in our
discussion on effective exchange. Equation (2.99), usually referred to as the
Heisenberg exchange interaction, often forms the starting point for discussions
of ferromagnetism or antiferromagnetism in insulators. The fact that it is valid
only under certain conditions does not seem to deter its application. In fact,
it works surprisingly well, as we shall see in later chapters.

2.2.8 Superexchange

The exchange constant in (2.99) involves essentially an eigenfunction of the
whole crystal. Needless to say, such a function is difficult to obtain. Let us
therefore consider an approach which has proven useful in discussing exhange
in insulators. The transition-metal flourides MnF2, FeF2, and CoF2 are all
observed to be antiferromagnets at low temperatures, with crystal struc-
ture and spin configuration indicated in Fig. 2.2. This exchange is difficult
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Fig. 2.2. Spin configuration of the transition-metal flourides

Fig. 2.3. Schematic representations of one of the intermediate states in super-
exchange

to understand in terms of direct exchange between the cations because of the
intervening flourine anions. A similar situation arises in the case of magnetic
oxides. In 1934 Kramers proposed the explanation that the cation wave func-
tions were being strongly admixed with the flourine wave functions, enabling
the cations to couple indirectly with each other. Kramers applied perturba-
tion theory to obtain the effective exchange resulting from this mechanism.
Let us consider two Mn2+ ions and an intervening F− ion. Because of the
overlap of their wave functions, one of the p electrons from the F− hops over
to one of the Mn2+ ions. The remaining unpaired p electron on the F then
enters into a direct exchange with the other Mn2+ ion. This excited state is
illustrated in Fig. 2.3 for the case in which the exchange between the unpaired
p electron and the Mn2+ is antiferromagnetic. By using such excited states
in a perturbation calculation of the total energy of the system we obtain an
effective exchange between the Mn2+ ions. The sign of this exchange depends
on the nature of the orbitals involved. However, a number of general features
that have evolved through the work of Goodenough [17] and Kanamori [18]
enable us to qualitatively predict the nature of the superexchange. Two such
features are that the electron transfer can take place only if the cation and
anion orbitals are nonorthogonal, and that if the cation-anion orbitals are
orthogonal, the direct exchange referred to above is positive (ferromagnetic);
otherwise it is negative (antiferromagnetic).

As an example of the application of these rules, let us consider the antifer-
romagnet CaMnO3. In this material the manganese occurs in the tetravelent
state Mn4+, which means that we have three d electrons. The crystal field at
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the Mn4+ sites is cubic. The d electrons are strongly affected by this crystal
field. In fact, the approximation is often made that the crystal field is stronger
than the intraionic Coulomb interaction, so that the latter may be neglected.
Then each electron may be considered separately. The effect of a cubic field
on the fivefold orbitally degenerate d state of a single electron is to split this
state into a threefold degenerate state labeled t2g and a twofold degenerate
state labeled eg. This splitting with the associated wave functions is shown in
Fig. 2.4. There is, in fact, some intraionic Coulomb interaction, which leads to
a Hund’s rule coupling of the spins. Therefore, since the t2g state lies lowest
for the particular coordination in CaMnO3, the three electrons will each go
into one of the t2g orbitals with their spins up.

The superexchange in this case involves the p electrons of the O2−. The
p orbitals are illustrated in Fig. 2.5. Examination of the wave functions in
Fig. 2.4, shows that the pz orbital is orthogonal to all the cation orbitals except
dx2−y2 . Therefore, if a pz electron hops over to a Mn4+, it must go into this
eg orbital. Since Hund’s rule requires that the total spin be a maximum, it
is the up spin from the pz orbital that transfers if the spins of the Mn4+ to
which it is going are up. The remaining pz down spin, since it is orthogonal to
eg orbitals, couples ferromagnetially to the other Mn4+. As a result, we find
that the pz orbital has produced a net antiferromagnetic coupling between the
cations themselves. It turns out that the contributions from the px orbitals
are much smaller.

The Goodenough–Kanamori rules predict that 180◦ superexchange bet-
ween electronic configurations d3−d5 bridged via an oxygen is ferromagnetic.
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Fig. 2.4. Representations of the eigenvalues and eigenfunctions of a d electron in a
cubic crystal field
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Fig. 2.5. Representations of the p orbitals

An example is Fe3+ and Cr3+ introduced alternately on the B sites of the per-
ovskites, ABO3. Attempts to synthesize a ferromagnet with LaCr0.5 Fe0.5 O3

originally failed because the material phase separates into the antiferromag-
nets LaCrO3 and LaFeO3. However, with new thin film fabrication techniques,
such as laser molecular beam epitaxy, it is possible to deposit alternating
monolayers of LaCrO3 and LaFeO3. The resulting superlatttice is indeed a
ferromagnet with a Curie temperature of 375 K [19].

Anderson [20] reformulated Kramer’s theory in an attempt to avoid the
high order perturbation expansion, and his results suggest that antiferro-
magnetism may be more common than Kramer’s theory implies. Anderson
worked in a basis of ligand wave functions which are a covalent admixture
of cation and anion functions. In Anderson’s theory magnetism is the result
of the interplay between two effects–the hopping of electrons between ligand
complexes, characterized by a hopping matrix element tαα′ , and an average
Coulomb interaction U between electrons on the same complex. In the limit
where the hopping may be treated as a perturbation, Anderson found that the
super-exchange interaction has the same spin dependence as (2.99) but with
a coefficient −t2αα′/U .

In recent years chemists have recast superexchange in terms of molecular
orbitals. Hay et al. [21] for example, have shown that the exchange interaction
between two spin 1

2 ions can be expressed as

J = Jab −
(ǫ1 − ǫ2)

2

Kaa − Kbb

. (2.100)

The exchange Jab involves orthogonalized molecular orbitals and is therefore
inherently ferromagnetic. The energies ǫ1 and ǫ2 are the bonding and anti-
bonding energies associated with the molecular orbitals on the two metal ions.
The K’s are defined in terms of molecular orbitals analogous to (2.84). Since
Kaa > Kbb the nature of the exchange depends upon the magnitude of ǫ1−ǫ2.
This quantity turns out to be a sensitive function of the metal-ligand-metal
angle. Willett [22] and his co-workers have exploited this fact to synthesize a
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Fig. 2.6. Exchange interactions between Eu-Eu pairs in Eu monochalcogenides
versus the pair separation Rτ . The horizontal arrows indicate the range of Rτ values
from the oxides to the tellurides. Open symbols indicate results deduced assuming
only second-nearest-neighbor coupling [23]. Units are degrees K

variety of pseudo-one-dimensional magnetic systems based on copper dimeric
species.

In semiconductors the anion energies form bands. As a result the superex-
change can extend to distant neighbors as illustrated in Fig. 2.6. These results
were deduced from the measured spin-wave dispersion relations just as atomic
force constants are deduced from phonon dispersion relations. We shall discuss
spin-waves in Chap. 8.

2.2.9 Molecular Magnets

Ordinarily we do not associate magnetism with organic or molecular-based
materials. Recently, however, chemists have synthesized materials with inter-
esting magnetic properties. One approach has been to synthesize organic
molecules with large numbers of unpaired spins that are in a high-spin state.
Examples include a hexacarbene with S = 6 and a nonocarbene with S = 9.
Incorporating these molecules into solids is still a challenge.

A more successful approach has been the synthesis of organometallic solids
comprised of linear chains of alternating metallocenium donors and cyano-
carbon acceptors. One such system is [FeCp∗

2]
+ [TCNE]− based on decamethy-

ferrocene (Cp∗ = C5(CH3)5) and tetracyanoethylene, shown in Fig. 2.7.
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Fig. 2.7. Alternating donor/acceptor linear chain structure observed for
[FeCp∗

2]
+[TCNE]−. Open circles = H, solid circles = C, small hatched circles

= N , and larged hatched circles = Fe [J. Miller]

There are many variations in which the iron is replaced by other
transition metals ions and the radical anion is replaced by other radical
anions such as TCNQ (tetracyano-p-quinodimethanide) or DDQ (dichloro-5,6-
dicyanobenzoquinone). As their long names suggest, the magnetic species
are widely separated which means that the magnetization, or magnetic
moment per unit volume is small. The magnetization of [FeCp∗

2]
+ [TCNE]−
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is 47 emu/cm3 which is to be compared with that of iron of 1715 emu/cm3.
The large separation between cations is also responsible for relatively weak
exchange interactions as reflected in low ordering temperatures. The Curie
temperature of our example Fig. 2.7 is 4.8 K. It may be surprising that these
materials show any coupling, considering that the transition metal ion sits
in the center of a relatively large molecule. The point is, however, that the
wavefunctions of these molecules are molecular orbitals with charge density
and spin density that extends throughout the molecule. These molecular or-
bitals have been calculated for the similar, but simpler, molecule, ferrocene,
Fe(C5H5)2, usually written Fe(Cp)2. The structure consists of two planar
C5H5 rings with the iron sandwiched in between. There are low-lying bonding
states associated with the C5 rings. The states involving the FeIII are:

e 2g

a1g

1ge )

)2(3dz

(3dxy, 3d yz

(3d ,xy 3d 2 −yx 2)

FeIII has the low spin d5 configuration. These five electrons fill the orbitals
as shown, giving a molecular spin of 1/2. The TCNE− also has one unpaired
electron.

There is some overlap of the cation and anion orbitals that gives rise to an
exchange interaction. McConnell [24] was the first to point out that such ionic
crystals could have ferromagnetic exchange. The mechanism McConnell pro-
posed is based on the virtual charge transfer. Suppose, for example, the anion
(A = acceptor) and cation (D = donor) spins are ferromagnetically aligned:

AD

Then the charge transfer D+A− → D+2A−2 leads to an intermediate state,
in which there are two electrons in orthogonal orbitals with parallel spin on
the cation:

D A

Had we started with an antiferromagnetic alignment:
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AD

then the intermediate state would have antiparallel spins on the cation:

D A

The parallel configuration has the lower energy (Hund’s rule). Therefore the
charge transfer favors the ferromagnetic state.

The unpaired electron on the anion could also transfer back to the cation
(i.e., D+A → D◦A◦). This favors antiferromagnetic coupling. Consistant with
the observed data the exchange is governed more by the D → A transfer.
There are also various interchain exchange interactions that could influence
the nature of the 3-dimensional ordering. However, it appears that the order-
ing in these salts is governed by the intrachain exchange.

Much of the recent work on these molecular magnets has been done by
Miller and Epstein [25] who have also discovered a polymeric magnet involving
vanadium with a Curie temperature about 400 K.

2.2.10 Double Exchange

In Anderson’s formulation of superexchange, the electron hopping is a virtual
process. If, however, we actually have carriers in the magnetic material, then
the hopping matrix element tαα′ enters directly into the band energy in a
tight-binding approximation. If we assume that the intra-atomic exchange is
so strong that the spin of a carrier is parallel to the local ionic spin then the
band energy is dependent upon the ionic spin configuration. This correlation
between the magnetism and the conductivity was first addressed by Zener [26]
and subsequently in more detail by Anderson and Hasegawa [27]. To determine
how the magnetic order affects a conduction electron, we recall our discussion
of how the spinor part of the electron wavefunction transforms under rotations.
Let us consider the following geometry:

z

α

α

z y

x

x
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The ionic spin is assumed to be rotated by an angle θ about the y-axis. If the

spinor at site α is

(

1
0

)

, then at site α′, it is given by the matrix for a rotation

about the y-axis,

(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)(

1

0

)

=

(

cos θ
2

− sin θ
2

)

.

Since we assume electron hopping can only occur if the electron hops into the
(

1
0

)

state, the orbital transfer integral bαα′ is multiplied by cos θ
2 . Thus,

tαα′ = bαα′ cos
θ

2
. (2.101)

If the ionic spins have an exchange, J , then the tipping between α and α′ gives
an exchange energy proportional to J cos θ. DeGennes has shown [28] that
minimizing the kinetic energy associated with the hopping and the exchange
energy can lead to a canted spin structure. Distortion of the spin lattice
around the hopping electron results in a magnetic polaron. This is discussed
in Sect. 10.4.

2.2.11 Exchange on a Surface

Recent developments in nanotechnology enable one to experimentally study
the exchange interaction between individual atoms. Figure 2.8 shows the tip
on a scanning tunneling microscope which is used to position Mn atoms next
to one another (0.36 nm apart) on an insulating surface. The tip can also be

Thin insulating layer

above metallic bulk

Magnetic atoms

Metallic tip

Mn Mn

N
N

N

Cu

Cu
Cu

Cu

Cu

Fig. 2.8. CuN surface showing how a scanning tunneling microscope can be used
to position two manganese atoms next to one another (C.F. Hirjibehedin)
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used to measure the conductance of these artificially created Mn clusters. The
inelastic electron tunneling spectra for a dimer shows structure that has been
indentified as an excitation between an antiparallel ground state involving
two spin 5/2 moments and a parallel excited state ref [29]. The voltage at
which this structure occurs enables a determination of the exchange interac-
tion between the two Mn moments. This has the values 2.7 meV or 6.4 meV
at 0.6 K depending upon where the dimer sits on the CuN surface. The insert
in Fig. 2.8 shows the cross-section of the charge density as calculated from a
“first-principles” calculation. The Mn 3d electrons couple to this surrounding
charge density through an “s-d” exchange interaction, Jsd S.s. This provides
an effective exchange between the two Mn moments of the order of J2

sd/Eg,
where Eg is the bandgap of the CuN. Since Jsd is of order 0.1 eV and Eg is
several eV the Mn-Mn exchange is of order of several meV as observed.

2.3 The Spin Hamiltonian

The Hamiltonian developed in the preceding section is completely general,
and a knowledge of its eigenvalues would accurately describe the magnetic
properties of any material. Unfortunately, because of the large number of par-
ticles involved, such a knowledge is beyond us at this time. Therefore we try
to project out of the Hamiltonian those terms which adequately describe the
situation and yet are amenable to calculation. Experimentalists in particular
often propose “phenomenological” Hamiltonians to explain certain observa-
tions, leaving to theoreticians the job of establishing the legitimacy of such
forms. In the remainder of this chapter we shall indicate the origin of such
phenomenological Hamiltonians.

2.3.1 Transition-Metal Ions

The first row of transition-metal ions and their electronic configurations are
listed in Table 2.4. The important feature about transition-metal ions is that
the magnetic, or unpaired, electrons lie in the outermost shell of the ion.
Therefore they are easily influenced by any external field produced by neigh-
boring ligands. That is, the crystal field is likely to be one of the largest
terms in the Hamiltonian. Thus we might expect that the contributions to
the Hamiltonian, in order of descending strength, are

H = Hintraatomic Coulomb + Hcrystal field + Hspin−orbit + HZeeman . (2.102)

Of course, depending on the situation, we may have to consider additional
terms, such as the hyperfine interaction. However, let us consider the eigen-
states of the Hamiltonian (2.102). First of all, the intraatomic Coulomb inter-
action leads to spectroscopic energy levels, the lowest of which is determined
by Hund’s rules. This ground state is indicated in the last column of Table 2.4.
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For most magnetic properties it is sufficient to consider only the lowest term.
This is because term energies are of the order of tens of thousands of wave
numbers, whereas magnetic energies are at most tens of wave numbers.

The behavior of a given term in the crystal field may be calculated by
the technique developed in the last section. Cubic symmetry is the predomi-
nant symmetry encountered in most crystals, and Fig. 2.9 indicates how group
theory predicts splitting of the various terms of Table 2.4 in such a case. The
eigenfunctions of Hintra +Hcryst will be denoted as |Γ, γ; S, MS〉, where Γ is
the irreducible representation of the point-group symmetry.

Consider, for example, the 3d3 configuration. From Hund’s rules, the
ground state is

|L, ML; S, MS〉 =

∣

∣

∣

∣

3, ML;
3

2
, MS

〉

, (2.103)

which is (2L + 1)(2S + 1) = 28-fold degenerate. In the presence of a cubic
crystal field this state splits as shown in Fig. 2.9. Thus the ground state would
be denoted as |A2, γ; 3

2 , MS〉.
The g Tensor. Now consider the spin-orbit and Zeeman terms. Since we
are considering matrix elements only within a given LS term, the matrix
elements of

∑

i

ξ(ri)li · si

are proportional to those of L ·S, by the Wigner–Eckhart theorem. Thus the
spin-orbit Hamiltonian may be written

Hsp−orb = λL · S , (2.104)

Table 2.4. Configuration of the iron-group ions

Ti3+, V4+ 3d1 2D

V3+ 3d2 3F

Cr3+, V2+ 3d3 4F

Mn3+, Cr2+ 3d4 5D

Fe3+, Mn2+ 3d5 6S

Fe2+ 3d6 5D

Co2+ 3d7n 5D

Co2+ 3d7n 5D

Co2+ 3d7n 4F

Ni2+ 3d8 3F

Cu2+ 3d9 2D
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where λ is the spin-orbit parameter. Similarly, the Zeeman Hamiltonian is

HZ = µB(L + 2S) · H . (2.105)

We now transform Hsp−orb + HZ into the so-called spin Hamiltonian by a
method proposed by Pryce, in which we project out the orbital dependence.
Since neither Hintra nor Hcryst has mixed orbital and spin states, our eigen-
functions are products of the form |Γ, γ〉|S, MS〉. Let us evaluate the expecta-
tion value of Hsp−orb +HZ for an orbitally nondegenerate ground state |Γ, γ〉.
To second order in perturbation theory,

Heff = 〈Γ, γ|Hsp−orb + HZ |Γ, γ〉

= 2µBH · S −
∑

Γ ′,γ′

|〈Γ ′, γ′|µBH · L + λL · S|Γ, γ〉|2
EΓ ′,γ′ − EΓ,γ

. (2.106)

Expanding the square gives

Heff = 2µH · S − 2µBλ
∑

µ,ν

ΛµνSµHν − λ2
∑

µ,ν

ΛµνSµSν − µ2
B

∑

µ,ν

HµHν ,

(2.107)

where

Λµν =
∑

Γ ′γ′

〈Γ, γ|Lµ|Γ ′, γ′〉〈Γ ′, γ′|Lν |Γ, γ〉
EΓ ′,γ′ − EΓ,γ

. (2.108)
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Fig. 2.9. Crystal-field splittings of the iron-group ion ground states. The first set
of splittings are the result of a cubic crystal field. Subsequent splittings are due to
an additional tetragonal distortion
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This may be written as

Heff =
∑

µ,ν

(µBgµνHµSν − λ2AµνSµSν − µ2
BΛµνHµHν) , (2.109)

where gµν is the g tensor

gµν = 2(δµν − λΛµν) . (2.110)

The fact that gµµ differs from 2 tells us that owing to the spin-orbit interaction,
the magnetization is now no longer spin only. That is, a small amount of orbital
angular momentum has been admixed back into the ground state.

The g value of the free electron is not precisely 2. There are quantum
electrodynamic corrections which lead to the value g = 2.002319.

As an example of how this value is changed in a solid let us consider
the semiconductor silicon. In the ideal crystalline state each silicon atom has
four valence electrons which form bonds with four neighboring silicon atoms.
If this ideal crystal is irradiated, with high-energy electrons, for example,
defects are introduced. One of these is the divacancy illustrated in Fig. 2.10a.
The removal of the two atoms A and B leaves six broken bonds, or unpaired
electrons. Those electrons associated with atoms 2 and 3 and those associated
with 5 and 6 reconstruct bonds as indicated in the figure. The remaining
two electrons from atoms 1 and 4 then form an “extended” bond across the
vacancy. If one of these latter two electrons is removed by some means, leaving
the defect with a net positive charge, the remaining electron is found to have
the g value [30]

(a) (b)

Fig. 2.10. Defects in (a) crystalline and (b) amorphous silicon having nearly free
electron g values
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g1 = 2.0004 ,
g2 = 2.0020 ,
g3 = 2.0041 .

If the silicon is prepared as an amorphous film, by the decomposition of
silane gas, for example, then the atomic disorder sometimes leaves a silicon
atom with only three other silicon neighbors as illustrated schematically in
Fig. 2.10b. The fourth unpaired electron is referred to as a “dangling” bond.
This electron is found to have the average g value [31]

g = 2.0055 .

Although these g values differ by less than 1% these differences are easily
measured, as we shall discuss in Chap. 5, and provide an extremely important
characterization of the electronic center.

Anisotropy. The second term in (2.109) represents the fine-structure or single-
ion anisotropy. Notice that ∧µν reflects the symmetry of the crystal. The spin
Hamiltonian must also display this symmetry; for example, in a cubic crystal
∧xx = ∧yy = ∧zz. Thus the anisotropy term reduces to a constant. For axial
symmetry ∧xx = ∧yy = ∧⊥ and ∧zz = ∧||. Thus, if we neglect the last term,
the effective axial Hamiltonian is

Heff = g||µBHzSz + g⊥µB(HxSx + HySy) + D[S2
z − 1

3
S(S + 1)]

+
1

3
S(S + 1)

(

2 ∧⊥ +Λ||

)

λ2 , (2.111)

where D = λ2(∧|| −∧⊥). A Hamiltonian of this form based on the symmetry
of the crystal is usually taken as the starting point in describing paramag-
netic systems involving transition-metal ions. Thus such ions in crystals are
characterized by their g,D, etc., parameters.

An important experimental fact is that these crystal-field parameters do
not change appreciably for concentrated versions of the same salt. Hence,
we shall find these paramagnetic states useful when we discuss ferromag-
netism. For example, we can see from the discussion above that the anisotropy
constants depend on the energy levels, which in turn depend on the posi-
tions of the neighboring ions. Thus, if these ions move because of the pres-
ence, say, of phonons, then we have a coupling between this motion and the
spins.

The last term in the Hamiltonian (2.109) will survive the two field deriv-
atives leading to the static susceptibility, resulting in the so-called Van Vleck

susceptibility , which is temperature independent.
As an example of the application of the spin Hamiltonian, let us consider

a spin 3
2 in an axially symmetric system with an external field applied along

the c axis. If we assume that the crystal field is of sufficiently low symmetry
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Fig. 2.11. Representation of the effect of the spin-orbit and Zeeman interactions
on an orbital singlet with spin 3

2

to remove any orbital degeneracy of the ground state, then (2.111) applies.
Dropping the constant part, we have

Heff = g||µBHSz + D

[

S2
z − 1

3
S(S + 1)

]

. (2.112)

The matrix of Heff in the basis | 32 , MS〉 is

Heff =
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D − 3
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2g||µBH 0

0 0 0 D + 3
2g||µBH















.

(2.113)

The eigenvalues are shown in Fig. 2.11. We see that there is a zero-field split-
ting of 2D.

Effective Exchange. In our discussion of exchange in the last section we
neglected spin-orbit effects as well as off-diagonal exchange effects. We found
above that the spin-orbit interaction leads to important contributions to the
spin Hamiltonian. It can also modify the form of the exchange interaction. To
illustrate these effects, let us consider the exchange between a Mn2+ impurity
and a neighboring Co2+ ion in CoCl2·2H2O [32]. Co2+ has seven d electrons
which correspond to three holes in the d shell. These holes behave just as
electrons would. Therefore we find that the intraatomic Coulomb interaction
leads to a 4F ground state with a spin of 3

2 . The crystal field in CoCl2·2H2O
is predominantly cubic, with a small tetragonal distortion. The cubic part
splits the 4F into three states, the lowest being 4T1, which has a threefold
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orbital degeneracy. As mentioned above, crystal-field effects on the transition-
metal ions are rather large. Therefore, in so far as we are concerned only with
magnetic properties, we may restrict our considerations to this 4T1 ground
state.

We now investigate how the tetragonal crystal-field component and the
spin-orbit interaction affect this level. Any threefold orbitally degenerate state
behaves as though it had an effective quantum number L = 1. We saw earlier
that if we restrict ourselves to a manifold of states in which, say, L is a good
quantum number, then we may express the crystal-field Hamiltonian in powers
of Lx, Ly, and Lz. The same argument applies even if L is only a good effective

quantum number. Thus the effect of a tetragonal crystal field upon our 4T1

ground state may be described by the Hamiltonian

Htetra = −δ

(

L2
z −

3

2

)

, (2.114)

where δ is a phenomenological crystal-field parameter and L = 1. The spin-
orbit interaction may also be expressed in terms of the effective orbital angular
momentum,

Hsp−orb = λ′L · SCo , (2.115)

where λ′ is an effective spin-orbit parameter. The operators L+ and L− are the
raising and lowering operators for the components of the 4T1, just as the corre-
sponding real operators would connect the components of a real P state. This
technique of writing Hamiltonians in terms of effective-angular-momentum
operators is an extremely useful tool for understanding the qualitative features
of the electromagnetic absorption spectra of magnetic systems.

The basis functions for our 4T1 state have the form |ML,MS〉, where
ML = −1, 0, or +1, and MS = ± 1

2 or ± 3
2 . The effect of Htetra + Hsp−orb

is to split the 4T1 into six doublets. Again, for magnetic considerations, we
consider the lowest of these. The eigenfunctions have the form

ψ± = a

∣

∣

∣

∣

∓1,±3

2

〉

+ b

∣

∣

∣

∣

0,±1

2

〉

+ c

∣

∣

∣

∣

±1,∓1

2

〉

, (2.116)

where a, b, and c are certain mixing coefficients which may, in general, be
complex. We now inquire how the exchange with the neighboring Mn2+ affects
this doublet. Since it is a doublet, the exchange should be expressible as an
effective spin of 1

2 interacting with the Mn2+ spin. The purpose of this example
is to show that when the exchange is in fact expressed in terms of an effective
spin of 1

2 , it does not have the simple isotropic form we have so far been using.
The first thing we must do is establish an expression for the exchange which

we know to be correct. Recall the the 4T1 state has a threefold orbital degen-
eracy, and that the three d holes can be treated just as electrons. Therefore
we have a situation in which there is only one state of maximum multiplic-
ity, which means that the total spin is a good quantum number. Also, since
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the ground state of Mn2+ is an S state, the total spin of this ion is a good
quantum number. Therefore the exchange interaction may be written as

Hex = −
∑

MLM ′

L

J(ML,M ′
L)SMn · SCo . (2.117)

Notice that we are explicitly including the possibility of off-diagonal exchange.
Thus, in terms of actual electron interchange, the exchange integral J(ML,M ′

L)
would characterize the interchange in which an electron from a Co2+ in the
state ML jumps over to the Mn2+, while an electron from the Mn2+ jumps
back to the Co2+ and in so doing changes it to the M ′

L state. These off-
diagonal exchange integrals may be complex. As long as the orbital states so
connected lie within the 4T1 manifold, the scalar spin product may be used
even to describe this off-diagonal exchange.

We now wish to know what form this exchange takes when expressed in
terms of the effective spin 1

2 of the Co2+ ground state. The most general
interaction has the form

Heff = −Seff · J · SMn , (2.118)

where J is an exchange dyadic. If we evaluate the matrix elements of (2.117)
in the basis |ψ±,MS〉, where MS is the Mn2+ spin quantum number (S = 5

2 ),
and compare them with the matrix elements of (2.118) evaluated in the basis
| ± 1

2 ,MS〉, we find that all the elements of Jµν are nonzero. For example,

Jxy = −2c2Im{J(1,−1)} . (2.119)

The general matrix Jµν may be separated into a symmetric and an antisym-
metric part. The antisymmetric exchange may be written as

D · Seff × SMn , (2.120)

where the vector coupling coefficient D is related to Jµν . This exchange is also
referred to as the Dzialoshinski–Moriya exchange [33]. If the elements of the
symmetric exchange are different, we speak of this as anisotropic exchange.
There are two limiting forms that are popularly used: the Ising model

HIsing = −2J
∑

i,δ

Sz
i Sz

i+δ ,

and the XY model

HXY = −2J
∑

i,δ

(Sx
i , Sx

i+δ + Sy
i Sy

i+δ) .

Here δ refers to a nearest neighbor. Thus we see that when the exchange
interaction is expressed in terms of the effective spin of the ground state, it
may have a very general form owing to the presence of orbital effects.
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Table 2.5. Configurations of the rare-earth ions

Ce3+ 4f15s2p6 2F5/2

Pr3+ 4f25s2p6 3H4

Nd3+ 4f35s2p6 4I9/2

Pm3+ 4f45s2p6 6I4

Sm3+ 4f55s2p6 6H5/2

Eu3+ 4f65s2p6 7F0

Gd3+ 4f75s2p6 8S7/2

Tb3+ 4f85s2p6 7F6

Dy3+ 4f95s2p6 6H15/2

Ho3+ 4f105s2p6 5I8

Er3+ 4f115s2p6 4I15/2

Tm3+ 4f125s2p6 3H6

Yb3+ 4f135s2p6 2F7/2

f
n

2

4

6

0
0

2 4 6 8 10 12 14

L or S

S

2.3.2 Rare-Earth Ions

The electronic configurations of the rare-earth ions are listed in Table 2.5.
For these ions we see that the unpaired electrons lie inside the 5s2p6 shells.
Consequently they are not very strongly affected by crystal fields, and we
might expect the Hamiltonian to consist of the following terms, in order of
descending strength:

H = Hintraatomic Coulomb + Hspin−orbit + Hcrystal field + HZeeman . (2.121)

The intraatomic Coulomb interaction produces states characterized by L, ML,
S, and MS . When the spin-orbit interaction is added, only the total angular
momentum J = L + S is conserved. Therefore the states have the form
|J,MJ ; L, S〉.

Let us consider, for the moment, the effect of the Zeeman term in the
absence of any crystal field,

HZ = µB(L + 2S) · H . (2.122)

Since the states are characterized by the eigenvalues of J , we rewrite this as

HZeeman = gJµBJ · H , (2.123)

where gJ is the Landé g value, defined by gJJ = L + 2S. This has the value
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gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (2.124)

Thus the state |J,MJ 〉 is split into 2J + 1 equally spaced states with the
separation gJµBH. For Ce3+, for example, gJ = 6

7 .
In the presence of a crystal field the splitting of the state |J,MJ 〉 is easily
determined by expressing the crystal field in operator equivalents of J . Thus
for a crystal field of D2 symmetry we have

Hcryst = B0
2O0

2 + B2
2O2

2 + B0
4O0

4 + B2
4O2

4 + B4
4O4

4

+B0
6O0

6 + B2
6O2

6 + B4
6O4

6 + B6
6O6

6 . (2.125)

where the operators 0m
n were defined in (2.52).

The matrix of Hcryst in the basis |J,MJ ;L, S〉 is easily constructed from
tables in [12]. The result for Ce3+ is
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where

B ≡









10B0
2 + 60B

4

√
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√
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.

This gives three doublets which have the form

ψ+
n = an

∣

∣

∣

∣

5

2

〉

+ bn

∣

∣

∣

∣

1

2

〉

+ cn

∣

∣

∣

∣

−3

2

〉

, (2.127a)

ψ−
n = an

∣

∣

∣

∣

−5

2

〉

+ bn

∣

∣

∣

∣

−1

2

〉

+ cn

∣

∣

∣

∣

3

2

〉
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In terms of the states |mlmz〉, these may be written as

ψ+
n = ϕ1α + ϕ2β , (2.128a)

ψ−
n = ϕ∗

2α − ϕ∗
1β , (2.128b)

where ϕ∗
1 = ϕ1 and ϕ∗

2 = −ϕ2. Under the time-reversal operator T = iKσy,
where K is the conjugation operator, these states are related by

Tψ+
n = ψ−

n , (2.129a)

Tψ−
n = −ψ+

n . (2.129b)

Such a pair of states is said to form a Kramers doublet . The states (2.116)
also formed a Kramers doublet.

Let us now consider the behavior of the lowest Kramers doublet in an
external magnetic field. The Hamiltonian is

HZ = µB(l + 2s) · H . (2.130)

Since we are within a manifold where J is a good quantum number, this may
be written as

HZ = gJµBJzH . (2.131)

The Zeeman matrix for the lowest doublet is

[

gJµBH
(

5
2a2

1 + 1
2b2

1 − 3
2c2

1

)

0

0 −gJµBH
(

5
2a2

1 + 1
2b2

1 − 3
2c2

1

)

]

. (2.132)

Therefore the doublet splits linearly in the field. An effective g value is often
introduced by defining the splitting of two levels in a field as geffµBH. In this
case the effective g value would be

geff = gJ

(

5a2
1 + b2

1 − 3c2
1

)

. (2.133)

Notice that the g value depends directly on the coefficients in the wave func-
tion (2.127). For this reason measurements of the g value provide a sensitive
test of the ground-state wave function.

2.3.3 Semiconductors

It is interesting to carry out the calculation for the g value of an electron
moving in the periodic potential, V (r), of a crystal lattice. The Hamiltonian is

H = Hkinetic + Hcrystal + Hspin−orbit + HZeeman . (2.134)
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The eigenfunctions of an electron moving in a periodic potential have the
Bloch form unk(r) exp(ik · r) which give rise to energy bands characterized
by band indices n and wave vector k. In the absence of the Zeeman term the
function unk(r) satisfies

[

1

2m
(p + �k)2 + V (r) +

�

4m2c2
σ ×∇V (r) · (p + �k)

]

unk(r) = ǫnkunk(r) .

(2.135)

In the case of the “three-five” semiconductors, which are composed of elements
from the third and fifth columns of the period table (e.g., GaAs, InSb) the
valence band is p-like while the conduction band is s-like. The band structure
in the vicinity of k = 0 is illustrated in Fig. 2.12. The labels Γ6, etc., indicate
the irreducible representations according to which the wave functions at k = 0
transform. The first feature to note is that the spin-orbit interaction has split
the threefold degeneracy of the p-like valence band. Secondly, the curvatures
of these bands are different. This curvature is a measure of the effective mass
of the electron. We may obtain an estimate of this mass by treating the term
(�/m)k · p in (2.135) as a perturbation.

Calculating the second-order correction to the energy of the conduction
band leads to the effective mass tensor [34a],

( m

m∗

)

µν
= δµν +

2

m

∑

Γ

〈Γ6|pµ|Γ 〉〈Γ |pν |Γ6〉
ǫΓ6

− ǫΓ

. (2.136)
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Fig. 2.12. Energy bands near k = 0 for zinc-blende crystals
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The valence band wave functions are linear combinations of the usual x, y,
and z components of the p state. Since the III–V compounds have the cubic
zinc-blende structure, if we restrict our consideration only to the bands shown
in Fig. 2.12 then there is only one parameter,

2

m
〈Γ, µ|pµ|s〉|2 ≡ P 2 ,

and the effective mass becomes

m

m∗
= 1 +

P 2

3

3Eg + 2∆

Eg(Eg + ∆)
. (2.137)

Let us now consider the orbital moment associated with an electron at the
bottom of the conduction band,

〈Γ6|Lz|Γ6〉 =
∑

Γ

[〈Γ6|x|Γ 〉〈Γ |py|Γ6〉 − 〈Γ6|y|Γ 〉〈Γ |px|Γ6〉] . (2.138)

This may be rewritten by noting that

[x,H] =
i

m
px +

i�

4m2c2
(σ ×∇V )x . (2.139)

Neglecting the spin-orbit contribution, which can be shown to be small, the
matrix elements of (2.139) satisfy

〈Γ |x|Γ6〉 =
1

m

〈Γ |px|Γ6〉
ǫΓ6

− ǫΓ

. (2.140)

This enables us to convert the orbital angular-momentum matrix element
into a form similar to the effective mass. In particular, eliminating the
linear-momentum matrix element between these two expressions leads to the
relation [34b]

g∗ =
µ∗

µB

= 1 + 〈Γ6|Lz|Γ6〉 = 2

[

1 − ∆

3Eg + 2∆

( m

m∗
− 1
)

]

. (2.141)

In general, one must include additional bands, in which case the relationship
between the effective g value and the effective mass is not as simple. Never-
theless, when the effective mass is very small the g value can become quite
large. In InSb, for example, m∗/m = −0.014 and g∗ = −51.4. Herring [35] has
shown that the angular momentum (2.138) may be spatially decomposed into
intraatomic and interatomic contributions. The large g values were shown
to be associated with the latter, corresponding to interatomic circulating
currents.

In this chapter we have seen the origins of various terms in the Hamiltonian
that may influence the magnetic response of a system. In the remaining chap-
ters we shall investigate how these terms manifest themselves when the system
is excited with a space-and/or time-varying magnetic field.
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Problems

2.1. While the discussion in Sect. 2.2.2 dealt mainly with the effect of the
nuclear charge on the electron, the electron also affects the nucleus. Co57, for
example, is radio-active with a half-life of 270 days. It captures an electron to
form Fe57 which decays by γ-radiation to an excited state with I = 3/2 which
quickly (1.4 × 10−7 s) decays to the ground state with I = 1/2.

Ordinarily when the nucleus emits a γ-ray it recoils. However in 1958, R.L.
Mossbauer discovered that nuclei embedded in solids can emit and absorb
γ-rays without transferring recoil energy to the lattice. The basic experimen-
tal arrangement for measuring the γ-ray energy consists of a moving source,
an absorber, and a detector placed beyond the absorber. The transmitted
intensity is plotted as a function of velocity. The 14.4 KeV γ-ray has a natural
linewidth of 5 × 10−9 eV which corresponds to a Doppler velocity of 1 mm/s.

(a) In Sect. 2.2.2 we also assumed that there was no electron charge at the
nucleus. But, in fact, s-electrons do have nonzero amplitude, ψ(0), at the
origin. Assuming the electron has a constant charge density, e|ψ(0)|2, and
interacts with the nuclear charge through a Coulomb potential Ze/r, out
to a radius rA for the excited state and rB for the ground state, calculate
the shift in the γ-ray energy due to this electronic charge density.

(b) If the emitter and the absorber have the same electronic structure their
shifts will be the same. Therefore to observe this shift, called the isomer
shift, the electronic charge density at the emitter nucleus, e|ψe(0)|2 must
be different from that at the absorber nucleus, e|ψa(0)|2. Calculate the
observed isomer shift, δ, in terms of these wavefunctions.

(c) Suppose the electronic charge distribution produces an electric field gradi-
ent at the Fe57 nucleus. Using (2.38), sketch the effect of this gradient on
the energy levels in Fig. 2.13. Assuming dipole transition selection rules,
i.e., ∆mI = ±1, sketch the Mossbauer spectrum.

(d) In order to simplify the Mossbauer spectrum, either the source or absorber
should have an unsplit line. Co57 diffused into stainless steel is such a case.
Figure 2.14 shows the absorption of Fe57 in Fe2O3 of γ-rays emitted from a
stainless steel source. What is the effective magnetic field at the nucleus?
Discuss the origin of this field in the context of (2.38).

2.2. As an example of the usefulness of character tables consider an atomic
electron surrounded by an environment that has cubic symmetry. In particu-
lar, suppose it has sixfold coordination as shown in Fig. 2.1a. The symmetry
elements which take this environment into itself are the identity (E), eight
rotations by 2π/3 about the cube body diagonals (C3), three rotations by π
about the cube axis(C2), six rotations by π/2 about these same axes (C4)
and six rotations by π about axes through the origin parallel to face diag-
onals (C2). These operations constitute a group, generally labelled O. The
number of elements of the group, denoted by h, is 24 in this case. Notice that
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Fig. 2.13. Decay scheme of Co57 and Fe57
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Fig. 2.14. The absorption of Fe57 bound in Fe2O3 of the 14.4 keV gamma ray
emitted in the decay of Fe57 bound in stainless steel as a function of relative source-
absorber velocity

the elements group themselves into classes, Gk, with Nk elements. It can be
shown that the number of irreducible representations is equal to the number of
classes. Thus the character table will always be “square”. The character table
for this group is Table 2.6. An electron simply in a Coulomb potential has
complete spherical symmetry. The set of rotations in three-dimensional space
forms an infinite group. The eigenfunctions are spherical harmonics which
transform into each other under rotation,

UR(α)Y m
l =

∑

Γ (l)(α)mm′Y m′

λ ,

where Γ l(α)mm′ = eimαδm,m′ . Therefore the character is

χl(α) =
sin(l + 1/2)α

sin(α/2)
.
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Notice that the character associated with the identity operation, E, i.e., α =
0, is

χ(l)(0) = lim
α→0

sin(l + 1/2)α

sin(α/2)
= 2l + 1 .

In the presence of the lower cubic symmetry this (2l + 1)-dimensional repre-
sentation is reducible to the irreducible representations of the O group. The
decomposition of the reducible character is given by

χ(R) =
∑

i

aiχ
(l)(R) ,

where χl(R) is the character of the ith representation for the group element
R. The coefficient ai is:

ai = (1/h)
∑

k

NKχ(i)(GK)∗χ(GK) .

Suppose, for example, we have an s-state(1 = 0) electron in a cubic environ-
ment. Then the character χ(l)(R) = 1 for each of the five classes, and the
representation is simply A1:

s

free space

A1

cubic environment
.

Calculate how the 2l + 1 degeneracies of p, d, and f electrons are split in a
cubic environment. Which have the potential for complete quenching?

2.3. Consider the sixfold coordination shown in Fig. 2.1a. If we elongate the
neighbors in the z-direction, this corresponds to a tetragonal distortion and
adds a term to the potential (2.50) proportional to Y 0

2 . In cartesian coordinates
this becomes

C2(3z
2 − r2) , C2 = qq′

[

1

a3
1

− 1

a3
2

]

for the sixfold tetragonal coordination we are considering. The corresponding
operator equivalent is

Table 2.6. Character table for the point group O

E 8C3 3C2 = 3C2
4 6C2 6C4

A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 −1 1

T2 3 0 −1 1 −1


