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I. INTRODUCTION 

Since the late 1940s, nanometer-sized magnetic particles have generated 
continuous interest because the study of their properties has proved to be scien- 
tifically and technologically very challenging. In particular, it was recognized 
that the ferromagnetic state, with a given orientation of the particle moment, has 
a remanent magnetization if the particle is small enough. This was the starting 
point of huge permanent magnets and magnetic recording industries. However, 
despite intense activity during the last few decades, the difficulties in making 
nanoparticles of good enough quality has slowed the advancement of this field. 
As a consequence, for 50 years, these applications concentrated above and then 
near the micrometer scale. In the last decade, this has no longer been the case 
because of the emergence of new fabrication techniques that have led to the 
possibility of making small objects with the required structural and chemical 
qualities. In order to study these objects, new techniques were developed such as 
magnetic force microscopy, magnetometry based on micro-Hall probes, or mi- 
cro-SQUIDS. This led to a new understanding of the magnetic behavior of 
nanoparticles, which is now very important for the development of new funda- 
mental theories of magnetism and in modeling new magnetic materials for 
permanent magnets or high density recording. 
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In order to put this review into perspective, let us consider Fig. 1,  which 
presents a scale of size ranging from macroscopic down to nanoscopic sizes. The 
unit of this scale is the number of magnetic moments in a magnetic system. At 
macroscopic sizes, a magnetic system is described by magnetic domains (Weiss 
1907) [ 11 that are separated by domain walls. Magnetization reversal occurs via 
nucleation, propagation and annihilation of domain walls (see the hysteresis 
loop on the left in Fig. 1 which was measured on an individual elliptic CoZr 
particle of 1 pm x 0.8 pm and a thickness of 50nm). Shape and width of do- 
main walls depend on the material of the magnetic system, on its size, shape and 
surface, and on its temperature [ 2 ] .  The material dependence of the domain 
walls has motivated the definition of two length scales: (i) the domain wall 
width 6 defined by 6 = and (ii) the exchange length h defined by h = 
f i / M s  where A is the exchange energy, K is the crystalline anisotropy constant, 
and M s  is the spontaneous magnetization. Qualitatively, the first definition shows 
that anisotropy energy favors a thin wall, while the exchange energy favors a 
thick wall. For very small crystalline anisotropy, the first definition suggests an 
infinite domain wall width which has a large total energy. This is due to the 
magnetostatic energy term that can be reduced by subdividing the ferromagnetic 
crystal into domains. Therefore, for very small crystalline anisotropy, the do- 
main wall width is of the order of magnitude of the exchange length h. Both 
length scales can range from submicrometer scales in alloys to atomic scales in 
rare earth systems. When the system size is of the order of magnitude of 6 or h, 
the formation of domain walls requires too much energy. Therefore, the mag- 
netization remains in the so-called single-domain state. * Hence, the magnetiza- 
tion might reverse by uniform rotation, curling, or other nonuniform modes (see 
hysteresis loop in the middle of Fig. 1) .  In this review we discuss mainly this 
size range where the physics is rather simple (Sections I1 and 111). 

For system sizes well below 6 and h, one must take into account explicitly the 
magnetic moments (spins) and their couplings. The theoretical description is 
complicated by the particle’s boundaries [3-51. 

At the smallest size (below which one must consider individual atoms and 
spins) there are either free clusters made of several atoms [6,7] or molecular 
clusters which are macromolecules with a central complex containing magnetic 
atoms. In the last case, measurements on the Mn12 acetate and Fe8 molecular 
clusters showed that the physics can be described by a collective moment of spin 
S = 10 (Section V.A). By means of simple hysteresis loop measurements, the 
quantum character of these molecules showed up in well-defined steps which are 
due to resonance quantum tunneling between energy levels (see hysteresis loop 
on the right in Fig. 1). 

*In the theory of micromagnetism the single-domain state describes the state where the magnetization 
is perfectly aligned [2]. whereas experimentalists mean often a state without domain wall. 
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Figure 1. Scale of size that goes from macroscopic down to nanoscopic sizes. The unit of this 
scale is the number of magnetic moments in a magnetic system (roughly corresponding to the number 
of atoms). The hysteresis loops are typical examples of magnetization reversal via nucleation, 
propagation, and annihilation of domain walls (lefr), via uniform rotation (middle), and via quantum 
tunneling (righr). 

In the following sections, we review the most important theories and 
experimental results concerning the magnetization reversal of single-domain 
particles and clusters. Special emphasis is laid on single-particle measurements 
avoiding complications due to distributions of particle size, shape, and so on. 
Measurements on particle assemblies has been reviewed in Ref. 8. We mainly 
discuss the low-temperature regime in order to avoid spin excitations. 

In Section 11, we briefly review the commonly used measuring techniques. 
Among them, electrical transport measurements, Hall probes, and micro-SQUID 
techniques seem to be the most convenient techniques for low-temperature mea- 
surements. Section I11 discusses the mechanisms of magnetization reversal in 
single domain particles at zero kelvin. The influence of temperature on the mag- 
netization reversal is reported in Section IV. Finally, Section V shows that for very 
small systems or very low temperature, magnetization can reverse via tunneling. 

11. SINGLE-PARTICLE MEASUREMENT TECHNIQUES 

The following sections review commonly used single-particle measuring techni- 
ques avoiding complications due to distributions of particle size, shape, and so 
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on, which are always present in particle assemblies [8]. Special emphasis is laid 
on the micro-SQUID technique and the developed methods which allowed the 
most detailed studies at low temperatures. 

A. Overview of Single-Particle Measurement Techniques 

The dream of measuring the magnetization reversal of an individual magnetic 
particle goes back to the pioneering work of NCel [9,10]. The first realization 
was published by Morrish and Yu in 1956 [ l l ] .  These authors employed a 
quartz-fiber torsion balance to perform magnetic measurements on individual 
micrometer-sized y-Fe203 particles. With their technique, they wanted to avoid 
the complication of particle assemblies which are due to different orientations of 
the particle’s easy axis of magnetization and particle-particle dipolar interac- 
tion. They aimed to show the existence of a single-domain state in a magnetic 
particle. Later on, other groups tried to study single particles, but the experi- 
mental precision did not allow a detailed study. A first breakthrough came via 
the work of Knowles [ 121 who developed a simple optical method for measuring 
the switching field, defined as the minimum applied field required to reverse the 
magnetization of a particle. However, the work of Knowles failed to provide 
quantitative information on well defined particles. More recently, insights into 
the magnetic properties of individual and isolated particles were obtained with 
the help of electron holography [ 131, vibrating reed magnetometry [ 141, Lorentz 
microscopy [ 15, 161, magneto-optical Kerr effect [17], and magnetic force mi- 
croscopy [18, 191. Recently, magnetic nanostructures have been studied by the 
technique of magnetic linear dichroism in the angular distribution of photoelec- 
trons or by photoemission electron microscopy [20,21]. In addition to magnetic 
domain observations, element-specific information is available via the charac- 
teristic absorption levels or threshold photoemission. * Among all mentioned 
techniques, most of the studies have been carried out using magnetic force 
microscopy at room temperature. This technique has an excellent spatial resolu- 
tion, but time-dependent measurements are difficult due to the sample-tip inter- 
action. 

Only a few groups were able to study the magnetization reversal of individual 
nanoparticles or nanowires at low temperatures. The first magnetization mea- 
surements of individual single-domain nanoparticles and nanowires at very low 
temperatures were presented by Wernsdorfer et al. [22]. The detector (an Nb 
micro-bridge-DC-SQUID) and the studied particles were fabricated using elec- 
tron-beam lithography. Coppinger et al. [23] investigated the magnetic proper- 
ties of nanoparticles by resistance measurements. They observed the two-level 
fluctuations in the conductance of a sample containing self-organizing ErAs 

*We refer to the literature concerning other domain observation techniques [l]. 
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quantum wires and dots in a semi-insulating GaAs matrix. By measuring the 
electrical resistance of isolated Ni wires with diameters between 20 and 40 nm, 
Giordano and Hong studied the motion of magnetic domain walls [24,25]. Other 
low-temperature techniques that may be adapted to single-particle measure- 
ments are Hall probe magnetometry [26-281, magnetometry based on magne- 
toresistance [29-3 11, or spin-dependent tunneling with Coulomb blockade 
[32,33]. At the time of writing, the micro-SQUID technique allows the most 
detailed study of the magnetization reversal of nanometer-sized particles 
[34-391. The following section reviews the basic ideas of the micro-SQUID 
technique. 

B. Micro-SQUID Magnetometry 

The superconducting quantum interference device (SQUID) has been used very 
successfully for magnetometry and voltage or current measurements in the fields 
of medicine, metrology, and science [40.41]. SQUIDS are mostly fabricated 
from an Nb-AIO,x-Nb trilayer, several hundreds of nanometers thick. The two 
Josephson junctions are planar tunnel junctions with an area of at least 0.5 pm2. 
In order to avoid flux pinning in the superconducting film the SQUID is placed in 
a magnetically shielded environment. The sample’s flux is transferred via a 
superconducting pickup coil to the input coil of the SQUID. Such a device is 
widely used because the signal can be measured by simple lock-in techniques. 
However, this kind of SQUID is not well-suited for measuring the magnetization 
of single submicron-sized samples because the separation of SQUID and pickup 
coil leads to a relatively small coupling factor. A much better coupling factor can 
be achieved by coupling the sample directly with the SQUID loop. In this 
arrangement, the main difficulty arises from the fact that the magnetic field 
applied to the sample is also applied to the SQUID. The lack of sensitivity to 
a high field applied in the SQUID plane led us to the development of the micro- 
bridge-DC-SQUID technique [22] which allows us to apply several Tesla in the 
plane of the SQUID without dramatically reducing the SQUID’S sensitivity. 

I .  Choice of SQUID Conjguration 

The main criteria for the choice of the micro-SQUID configuration were an easy 
coupling to a mesoscopic sample, a simple fabrication, a simple mode of opera- 
tion, robustness and stability, the desired temperature range, and operation in 
high magnetic fields (in particular for fields applied in the SQUID plane). These 
criteria led to the use of microbridge junctions instead of the commonly used 
tunnel junctions. 

The Josephson effect in microbridge junctions has first been suggested in 
1964 by Anderson and Dayem [42]. These superconducting weak links seemed 
to be very promising in order to design planar DC-SQUIDS with a one-step thin- 
film technology. However, Dayem bridges exhibit a Josephson current-phase 
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relation only when their dimensions are small compared to the coherence length 
5. Such dimensions were difficult to reach at those days. Nowadays, electron 
beam lithography allows one to directly fabricate reliable microbridge 
Josephson junctions made of materials like Al, Nb, and Pb. 

2. Fabrication of Micro-SQUIDS 

By using electron beam lithography, planar A1 or Nb microbridge-DC-SQUIDS 
(of 0.5 to 4 pm in diameter) can be constructed (Fig. 2) [43-451. A1 SQUIDs can 
be obtained by evaporating a 20- to 50-nm thin film onto a PMMA mask, 
followed by standard lift-off techniques. The fabrication of Nb SQUIDs revealed 
to be more difficult. The direct evaporation of Nb onto a PMMA mask led to Nb 
SQUIDs of poor quality which manifested themselves in a very low critical 
temperature of the superconductivity. Better Nb qualities were achieved by using 
UHV facilities and substrate temperatures of about 800 K, or higher, in order to 
grow 20-nm thin Nb films on Si substrates.* The Nb films were covered by 5 nm 
of Si. The Nb SQUIDs were then patterned with reactive ion etching (RIE) using 
an A10 mask made by an electron beam lithography via a standard PMMA 
technique. 

An alternative method to fabricate microbridge-DC-SQUIDS has recently 
been proposed by Bouchiat et al. [46]. The new method is based on local 
anodization of 3- to 6.5-nm-thick Nb strip lines under the voltage-biased tip 
of an atomic force microscope (AFM). Microbridge junctions and SQUID loops 
were obtained by either partial or total oxidation of the Nb layer. The first 
fabricated devices had about the same performance as micro-SQUIDS fabricated 
by electron beam lithography. The AFM-made SQUIDs should offer new fea- 
tures such as the fabrication at a chosen position allowing an optimized coupling 
to magnetic signals. In addition, we expect an increased intrinsic sensitivity: In 
the case of small magnetic clusters which are placed very close to the micro- 
bridge junctions, an improvement of the sensitivity of one to two orders of 
magnitude might be achieved due to the reduction of the microbridge size. It 
might allow us to detect the spin flips of about 100 magnetic moments. 

3. Magnetization Measurements Via Critical Current Measurements 

The microbridge-DC-SQUID have a hysteretic V-I curve (Fig. 3): Ramping the 
current up from zero, the SQUID transits from the superconducting to the 
normal state at the critical current I,. Due to Joule heating in the normal state, 
the SQUID stays resistive down to currents much smaller than I,. This hysteretic 

*In order to have a SQUID that can be exposed to a high field applied in the SQUID plane, the SQUID 
was made out of a very thin layer preventing flux trapping. In most cases, we used 20-nm-thick Nb 
layers allowing measurements of hysteresis loops in magnetic fields of up to 2T. Such SQUIDs might 
work at fields higher than 10T  when using very thin (<lOnm) Nb layers of high quality. 
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Figure 2. Scanning electron micrograph of an Nb microbridge-DC-SQUID fabricated by 
electron beam lithography. An Ni wire of diameter of about 90nm was deposited on the SQUID 
(Section III.B.2). 

V-I curve made it impossible to use standard SQUID electronics or lock-in 
amplifier to read out the SQUID. Therefore, Benoit et al. developed a method 
consisting in measuring the critical current of the micro-SQUID [43,44]. A 
computer-controlled circuit triggers simultaneously a current ramp (Fig. 4) 
and a 100-MHz quartz clock. As soon as a dVldt pulse is detected at the SQUID 
due to the transition from the superconducting to the normal state," the clock 
stops and the current is set to zero. The clock reading is transferred to the 
computer, and the cycle begins again. The critical current is proportional to 
the duration of the current ramp. The repetition rate is about 10 kHz, limited 
by the time needed to settle the current. Because the critical current I ,  is a 
periodic function of the flux going through the SQUID loop (Fig. 3, one can 
easily deduce the flux change in the SQUID loop by measuring the critical 
current. The sensitivity achieved by the critical current measurement technique 
was about l O - ' O , ~ / f i  for A1 SQUIDs and 1 0 - 4 0 0 / f i  for Nb SQUIDs 
(ao = h/2e = 2 x 1 0 - l ~  wb). 

*It is important to mention that the dVldr pulse can be detected directly on the current biasing lead of 
the SQUID; that is, for most cases it is sufficient to connect the SQUID with a single wire and the mass 
of the cryostat. 



CLASSICAL AND QUANTUM MAGNETIZATION REVERSAL 107 

0.1 

0.05 

h 

5 
a, 

- 

Ic-E ..... 

L 

f 
'c - 

- 
8 

-0.1 

............................................................ 

................................................... 7 r  Ic 'f 
At - At 

4 b 

..... 

* 
t 

Figure 4. Current injected into a SQUID loop. First, the current is increased quickly up to a 
current Z,-E which is close to the critical current I, .  Then, the current is ramped up to I,. As soon as a 
dVldt pulse is detected at the SQUID due to the transition from the superconducting to the normal 
state, the current is set to zero. Z, is proportional to the duration of the current ramp Ar, The repetition 
rate of the cycle is up to 10 kHz. 

In order to have good magnetic flux coupling, the mesoscopic systems, for 
instance the magnetic particles, is directly placed on the SQUID loop (Fig. 6) 
[45]. The SQUID detects the flux through its loop produced by the sample's 

Figure 3. Oscilloscope reading of a voltage versus current curve of an Nb microbridge-DC- 
SQUID. The SQUID transits from the superconducting to the normal state at the critical current I, .  
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magnetization. For hysteresis loop measurements, the external field is applied in 
the plane of the SQUID (Fig. 6); thus the SQUID is only sensitive to the flux 
induced by the stray field of the sample’s magnetization. The flux sensitivity of 
the critical current mode allowed us to detect the magnetization reversals corre- 
sponding to 104pB/& ( 10-’6emu/&)-that is, the magnetic moment of a 
Co nanoparticle with a diameter of 5 nm. The time resolution was given by the 
time between two measurements of the critical current. In this case, the achieved 
time resolution was 100 ps. 

4. Feedback Mode for  Hysteresis Loop Measurements 

For the detection of flux variations larger than @0/2, the direct critical current 
method (Section II.B.3) is complicated by the fact that Z, is a nonmonotonous 
function of the flux (Fig. 5) which goes through the SQUID loop. In this cases, 
we used a feedback mode consisting in applying an external field perpendicular 
to the SQUID loop which compensates the stray field variations keeping the 
critical current constant at a working point as shown in Fig. 5. After each Z, 
measurement, the computer calculates the difference between a working point 
and I,, multiplies it with a feedback factor, and adds it to the feedback (or 
compensation) field. The feedback field gives then the stray field variation of 
the sample’s magnetization. It can easily be given in units of CDo. Knowing the 
coupling factor between particle and SQUID loop, absolute magnetic moment 
measurements are possible. 

The time resolution of the feedback mode depends on the rate of the Z, 
measurements. For rates of about 10 kHz, we are able to follow flux variations 
in the millisecond range. 

5. Cold Mode Method for  Magnetization Switching Measurements 

For studying the magnetization switching of nanoparticles, we developed a 
special mode, called the cold mode method [36-391, which are much faster 
and more sensitive than the previously presented modes. The achieved flux 
sensitivity allowed us to detect the magnetization switching corresponding to 
lo3 p~ (lo-’’ emu)-that is, the switching of a Co nanoparticle with a diameter 
of 2 to 3 nm. The time resolution of the switching detection reached the nano- 
second range. 

The cold mode method is also specially adapted for studying the temperature 
dependence of the magnetization reversal and macroscopic quantum tunneling 
of magnetization. Indeed, the main difficulty associated with the SQUID detec- 
tion technique lies in the Joule heating when the critical current is reached. After 
the normal state transition at the critical current, the SQUID dissipates for about 
100 ns which slightly heats the magnetic particle coupled to the SQUID. This 
problem can be solved by the cold mode method which uses the SQUID only as 
a trigger [36-391. 
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The cold mode consists in biasing the SQUID close to the critical current 
while a field is applied perpendicular to the SQUID plane so that the SQUID is 
in state A (B) for a positive (negative) flux jump (Fig. 5) that can be induced by 
the magnetization reversal of a particle coupled to the SQUID loop. The mag- 
netization reversal then triggers a transition of the SQUID from the supercon- 
ducting to the normal state; that is, a dVldt pulse can be detected on the current 
lead biasing the SQUID. Our SQUID electronics allows us to detect the dVldt 
pulse some nanoseconds after the magnetization reversal, allowing very precise 
switching field measurements. Because this method only heats the sample after 
the magnetization reversal, we called it the cold mode method. 

Another advantage of this mode is that the sample does not interfere with the 
rf-noise which is induced in oxide layer Josephson junctions of conventional 
SQUIDS because the hysteretic micro-SQUID is in the superconducting state 
before the magnetization reversal. 

Finally, the cold mode method is very important for studying macroscopic 
quantum tunneling of magnetization. Quantum theory predicts that the escape 
rate from a metastable potential well by quantum tunneling is strongly reduced 
by the coupling of the magnetic system with its environment. Therefore, the 
measuring device must be weakly coupled to the magnetic particle. However, in 
order to measure the magnetization reversal, the SQUID must be strongly 
coupled to the magnetic particle that hinders the possibility of quantum tunnel- 
ing. This problem can be solved by using the cold mode method. In order to 
show this schematically, Fig. 7 represents two energy potentials: One is the 
double well potential of the particle, and the other is the periodic potential of 
the SQUID. Before the magnetization reversal, both systems are in a metastable 
state: the particle because of an applied field which is close to the switching field 
and the SQUID because of a current through the SQUID loop which is close to 
the critical current. When the particle overcomes the saddle point or tunnels 
through the energy barrier, its magnetization rotates by only few degrees. For 
this starting process of the magnetization reversal, the coupling between particle 
and SQUID can be arranged to be very small." Afterwards, the particle falls into 

*In order to illustrate the dipolar couplings, let us consider the energy scales involved. For most of the 
particles measured so far below 1 K, the energy barrier height from the metastable state up to the 
saddle point is of the order of a few Kelvins whereas that from the lower state up to the saddle point is 
between 10' and 106K. These energy scales should be compared with the energy necessary to drive 
the SQUID out of its metastable superconducting state which is of the order of a few Kelvin. There- 
fore, only a small energy transfer is necessary to measure the magnetization reversal. In addition, a 
proper orientation of the easy axis of magnetization with respect to the SQUID loop can further reduce 
the coupling during the first stage of the magnetization reversal. In the case of an easy axis of 
magnetization perpendicular to the current direction in the SQUID wire (Fig. 6), the coupling factor 
between SQUID loop and particle is proportional to (1-COST), where cp is the angle between the 
direction of magnetization and its easy axis. Therefore, the coupling is very weak at the first stage of 
magnetization reversal where cp is small. 
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Magnetic Micro-SQUID 
particle 

Figure 7. Energy scheme of the cold mode method. After the particle overcomes the saddle 
point or tunnels through the energy barrier, it falls into the lower potential well releasing energy. A 
very small fraction A E  of this energy is transferred to the SQUID and drives the SQUID out of its 
metastable superconducting state. 

the lower well which implies a rotation of magnetization of up to 180". During 
this process, the coupling between particle and SQUID should be strong enough 
to drive the SQUID out of its metastable state. The corresponding transition 
from the superconducting into the normal state is easily measurable for a hys- 
teretic SQUID. The main disadvantage of the cold mode is that only the switch- 
ing field of magnetization reversal can be measured and not the magnetization 
before and during the magnetization reversal. 

6. Blind Mode Method fo r  Three-Dimensional Switching Field Measurements 

A disadvantage of the micro-SQUID technique is that it does not function 
properly when a significant field is applied perpendicular to the SQUID loop. 
It works also only below the superconducting critical temperature of Nb 
(Tc%7K for our SQUIDS). These facts limited us to 2D measurements and to 
T<T, in the first experiments [35-371. However, we showed recently that full- 
three-dimensional measurements can be done by using an indirect method [38]. 
In addition, this technique allows us to study the magnetization reversal for 
T>T,. 

Let us consider Fig. 8 showing switching field measurements (Section 111) for 
in-the-SQUID-plane applied fields, detected using the cold mode (Section 
II.B.5). The three-dimensional switching field measurements and the studies 
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as a function of temperature can be done using a three-step method which we 
call the blind mode (Fig. 8): 

1. Saturation. The magnetization of the particles is saturated in a given 
direction (at T =  35 mK). 

2. Testing. A test field is applied at a temperature between 35 mK and 30 K* 
which may or may not cause a magnetization switching. 

3. Probing. After cooling to T=35mK,  the SQUID is switched on and a 
field is swept in the plane of the SQUID to probe the resulting magnetiza- 
tion state using direct critical current measurements, the feedback mode, or 
the cold mode. 

If the SQUID detects a magnetization jump in step 3, this means that the 
previously applied test field was weaker than the switching field for the direction 
being probed in step 2. The next interaction will then be done with a stronger test 

90" 

0.1 

0 - 3-Probing 
I 

x 

0" 

270" 

Figure 8. Schematics for the blind mode method presenting the angular dependence of the 
switching field near the easy axis of a 3-nm Co cluster (full circles) (Section III.A.2). First, the 
magnetization of the particle is saturated in a given direction (at T= 35 mK). Then, a test field is 
applied, at a temperature between 35 mK and 30 K, which may or may not cause a magnetization 
switching. Finally, the SQUID is switched on (at T =  35 mK) and a field is applied in the plane of the 
SQUID to probe the resulting magnetization state. 

*Our highest temperatures of 30 K was only limited by the cooling time. Below 30 K, we achieved 
cooling rates of few Kelvins per second. 
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field. On the other hand, if the SQUID does not detect any magnetization jump 
in step 3, this means that the reversal occurred during step 2 .  The next interac- 
tion will then be done with a weaker field. When choosing the new test field with 
the help of a bisection algorithm, we needed about 8 repetitions of the three steps 
in order to get the switching field with good precision. This method allows us to 
scan the entire field space." 

7. Micro-SQUID Arrays 

We also use arrays of micro-SQUIDS as a magnetometer for macroscopic samples. 
There are three applications that were particularly interesting: crystals of magnetic 
molecular clusters [47] (Section V.A), nucleation and depinning of magnetic do- 
main walls in thin films [48], and arrays of magnetic dots [49]. The procedure 
consists in placing a sample on top of an array of micro-SQUIDS so that some 
SQUIDs are directly under the sample, some SQUIDs are at the border of the 
sample, and some SQUIDs are beside the sample (Fig. 9). When a SQUID is very 
close to the sample, it is sensing locally the magnetization reversal whereas when 
the SQUID is far away, it integrates over a bigger sample volume. Therefore, 
depending on the sample, one can obtain more insight in the magnetization reversal 
than with conventional techniques that measure only the total magnetization. 

Our magnetometer works in the temperature range between 0.035 and 6 K  
and in fields up to 5 T with sweeping rates as high as 30 Tls, along with a field 
stability better than a microtesla. The time resolution is about 1 ms (Section 
II.B.4) allowing short-time measurements. The field can be applied in any direc- 
tion of the micro-SQUID plane with a precision much better than 0.1" by 
separately driving three orthogonal coils [45]. 

Sample 

B 

Figure 9. Schematic representation of our magnetometer which is an array of micro-SQUIDS. 
Its high sensitivity allows us to study single crystals of the order of 10 to 500pm which are placed 
directly on the array. 

*It is worth mentioning that special precautions are necessary for anisotropies that are more complex 
than uniaxial (Section 111). 
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8. Scanning SQUID Microscope 

The micro-SQUID technique has recently been used to build a scanning SQUID 
microscope [50]. The SQUID is designed by electron beam lithography at the 
apex of a silicon cantilever. The lever is attached to a force sensor, allowing to 
image magnetically, as well as topographically with a spatial resolution of 50 nm 
and a flux resolution of about 10-J$o. The first application of this technique 
concerned the imaging of vortices in artificial networks. 

9. Outlook 

After the development of micro-SQUID technique in the early 1990s [43,44], 
the study of magnetization reversal in magnetic nanostructures began in 1993 
[45]. The first studied systems were micrometer-sized particles containing about 
10" magnetic moments. During the following years, the micro-SQUID techni- 
que has been improved to study smaller and smaller systems. In 2000, clusters 
containing about lo3 magnetic moments could be studied. This achievement 
raises the question whether further improvements might be possible. The funda- 
mental limit of a SQUID is the quantum limit which corresponds to a sensitivity 
of one magnetic moment for a SQUID with 1 pm2. One might come close to this 
limit by using shunted SQUIDS [51]. Another possibility could be a reduction of 
the section of the microbridges [46]. Finally, the micro-SQUID technique could 
be improved by using superconducting materials with higher critical tempera- 
tures allowing measurements at higher temperatures. 

111. MECHANISMS OF MAGNETIZATION REVERSAL 
AT ZERO KELVIN 

As already briefly discussed in the introduction, for a sufficiently small magnetic 
sample it is energetically unfavorable to form a stable magnetic domain wall. 
The specimen then behaves as a single magnetic domain. For the smallest single- 
domain particles,* the magnetization is expected to reverse by uniform rotation 
of magnetization (Section 1II.A). For somewhat larger ones, nonuniform reversal 
modes are more likely-for example, the curling reversal mode (Section 
III.B.l). For larger particles, magnetization reversal occurs via a domain wall 
nucleation process starting in a rather small volume of the particle. For even 
larger particles, the nucleated domain wall can be stable for certain fields. 
The magnetization reversal happens then via nucleation and annihilation pro- 
cesses (Section III.B.3). In these sections we neglect temperature and quantum 
effects. 

*In the theory of micromagnetism, the single-domain state describes the state where the magnetization 
is perfectly aligned [2], whereas experimentalists often mean a state without a domain wall. 
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The following section discusses in detail the uniform rotation mode that is 
used in many theories, in particular in NCel, Brown, and Coffey’s theory of 
magnetization reversal by thermal activation (Section IV) and in the theory of 
macroscopic quantum tunneling of magnetization (Section V). 

A. Magnetization Reversal by Uniform Rotation 
(Stoner-Wohlfarth Model) 

The model of uniform rotation of magnetization, developed by Stoner and 
Wohlfarth [52] ,  and NCel [53] ,  is the simplest classical model describing mag- 
netization reversal. One considers a particle of an ideal magnetic material where 
exchange energy holds all spins tightly parallel to each other, and the magneti- 
zation magnitude does not depend on space. In this case the exchange energy is 
constant, and it plays no role in the energy minimization. Consequently, there is 
competition only between the anisotropy energy of the particle and the effect of 
the applied field. The original study by Stoner and Wohlfarth assumed only 
uniaxial shape anisotropy, which is the anisotropy of the magnetostatic energy 
of the sample induced by its nonspherical shape. Thiaville has generalized this 
model for an arbitrary effective anisotropy which includes any magnetocrystal- 
line anisotropy and even surface anisotropy [54]. In the simplest case of uniaxial 
anisotropy, the energy of a Stoner-Wohlfarth particle is given by 

E = KVsin2$ - poMsVHcos (0 - $) (3.1) 

where KV is the uniaxial anisotropy energy which depends on the shape of the 
particle, V is the volume of the particle, M s  is the spontaneous magnetization, H 
the magnitude of the applied field, and $ and 0 are the angles of magnetization 
and applied field, respectively, with respect to the easy axis of magnetization. 
The potential energy of Eq. (3.1) has two minima separated by an energy barrier. 
For given values of 8 and H, the magnetization lies at an angle c$ which locally 
minimizes the energy. This position can by found by equating to zero the first 
derivative with respect to $ of Eq. (3.1): aE/ac$ = O .  The second derivative 
provides the criteria for maxima and minima. The magnetization reversal is 
defined by the minimal field value at which the energy barrier between the 
metastable minimum and the stable one vanishes-that is, at aE/ac$ = 
a2E/a$* = 0. A short analysis yields the angular dependence of this field, called 
the switching field H:w or in dimensionless units: 
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where Ha = 2K/(p0 M s )  is the anisotropy field. The angular dependence of hyw is 
plotted in Fig. 10. 

Contrary to hyw, the hysteresis loops cannot be expressed analytically and 
have to be calculated numerically. The result is seen in Fig. 11 showing the 
component of magnetization projected along the direction of the applied field; 
that is, MH = M s  cos(8-+). Such loops are often called Stoner-Wohlfarth hys- 
teresis loops." 

The main advantage of this classical theory is that it is sufficiently simple to 
add some extra features to it, as presented in the following. 

1. Generalization of the Stoner- Wohlfarth Model 

The original model of Stoner and Wohlfarth assumed only uniaxial shape ani- 
sotropy with one anisotropy constant [one second-order term, see Eq. (3. I)]. 

90" 

240" JUU 

270" 

Figure 10. Angular dependence of the Stoner-Wohlfarth switching field h:w = H:K,/Ha [Eq. 
(3.2)]. This curve is often called the "Stoner-Wohlfarth astroid." Cases 1 to 3 correspond to Eqs. 
(3.5) to (3.9) concerning the field dependence of the anisotrophy barrier height. 

*It is important to note that single-particle measurement techniques do not measure this component 
MH. For example, for the micro-SQUID technique. with the easy axis of magnetization in the plane of 
the SQUID and perpendicular to the current direction in the SQUID wire (Fig. 6), one measures a 
magnetic flux that is proportional to M s  cos 4 (Fig. 12). 
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Figure 11. Hysteresis loops of a Stoner-Wohlfarth particle for different field angles 8. The 
component of magnetization along the direction of the applied field is plotted; that is, MH = M s  cos 
( 4 4 ) .  

This is sufficient to describe highly symmetric cases like a prolate spheroid of 
revolution or an infinite cylinder. However, real systems are often quite complex, 
and the anisotropy is a sum of mainly shape (magnetostatic), magnetocrystalline, 
magnetoelastic, and surface anisotropy. One additional complication arises be- 
cause the different contributions of anisotropies are often aligned in an arbitrary 
way one with respect to each other. All these facts motivated a generalization of 
the Stoner-Wohlfarth model for an arbitrary effective anisotropy which was 
done by Thiaville [54, 551. 

Similar to the Stoner-Wohlfarth model, one supposes that the exchange 
interaction in the cluster couples all the spins strongly together to form a giant 
spin whose direction is described by the unit vector 6. The only degrees of 
freedom of the particle's magnetization are the two angles of orientation of 6. 
The reversal of the magnetization is described by the potential energy: 

where Vand M ,  are the magnetic volume and the saturation magnetization of the 
particle respectively, g is the external magnetic field, and E o ( 2 )  is the magnetic 
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anisotropy energy which is given by 

EFhape is the magnetostatic energy related to the cluster shape. E M c  is the mag- 
netocrystalline anisotropy (MC) arising from the coupling of the magnetization 
with the crystalline lattice, similar as in bulk. Esurface is due to the symmetry 
breaking and surface strains. In addition, if the particle experiences an external 
stress, the volumic relaxation inside the particle induces a magnetoelastic (ME) 
anisotropy energy EME.  All these anisotropy energies can be developed in a 
power series of mU,mt)m; with p = a + b + c = 2 ,  4, 6,. . . giving the order of 
the anisotropy term. Shape anisotropy can be written as a biaxial anisotropy 
with two second-order terms. Magnetocrystalline anisotropy is in most cases 
either uniaxial (hexagonal systems) or cubic, yielding mainly second- and 
fourth-order terms. Finally, in the simplest case, surface and magnetoelastic 
anisotropies are of second-order. 

Thiaville proposed a geometrical method to calculate the particle’s energy 
and to determine the switching field for all angles of the applied magnetic field 
yielding the critical surface of switching fields which is analogous to the Stoner- 
Wohlfarth astroid (Fig. 10). 

The main interest of Thiaville’s calculation is that measuring the critical 
surface of the switching field allows one to find the effective anisotropy of the 
nanoparticle. The knowledge of the latter is important for temperature- 
dependent studies (Section IV) and quantum tunneling investigations (Section 
V). Knowing precisely the particle’s shape and the crystallographic axis allows 
one to determine the different contributions to the effective anisotropy. 

Thiaville’s calculation predicts also the field dependence of the energy barrier 
height AE close to switching (E = ( 1  - H/He,) << 1)  which is important to 
know for temperature-dependent studies (Sections IV and V). Three cases have 
to be distinguished: 

1. In the majority of cases except the two following cases (see case 1 in Fig. 
10): 

where KV is the anisotropy energy constant, y is the angle of incidence 
between the local normal to the critical surface and the field sweeping 
direction, and p is the radius of curvature of the focal curve [ 5 5 ]  at He,. 
It is important to emphasize that all these variables can be found experi- 
mentally by measuring the critical surface of the switching field. For 
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uniaxial anisotropy (i.e., the 2D Stoner-Wohlfarth case), Eq. (3.5) 
becomes 

where 8 is the angle of the applied field with respect to the easy axis of 
magnetization [Eq. (3. l)]. 

2. At glancing incidence (see case 2 in Fig. 10) with respect to the critical 
surface (y = d 2 ) ,  the power of E is different, yielding 

AE = Ebe3 (3.7) 

where Eb has been calculated only in the two-dimensional case [54]. 
3. At a cusp point where +{=id2 (see case 3 in Fig. lo), 

where E { has been calculated only in the two-dimensional case [54]. In the 
case of uniaxial anisotropy i.e., the 2D Stoner-Wohlfarth case), Eq. (3.8) 
becomes 

AE = K V E ~  = KV 1 - - ( 3 (3.9) 

where H,=(2K/po M,) [Eq. (3.1)]. This equation is only valid for 8 = 0  
and d 2 ,  and it is valid for 0 5 H 5 Ha. This famous result of NCel [9, 101 
has often been wrongly used for assemblies of nanoparticles where it is 
very difficult to achieve the conditions 0 = 0 and d 2  [56]. Up to now, only 
the power 312 and 2 (cases 1 and 3) has been found by single-particle 
measurements [36, 371 (see also Figs. 28 and 29). 

Another simple analytical approximation for the field dependence of the energy 
barrier AE(H) was derived numerically by Pfeiffer [57, 581 

AE = KV( 1 - H/H,O,)" = EOE" (3.10) 

where a = 0.86 + 1.14h:w, and I Z : ~ ,  is given by Eq. (3.2). This approximation is 
good for the intermediate field regime-that is, for fields H not too close to Ha 
and not too small. 
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2. Experimental Etjidence for Magnetization Reversal by Uniform Rotation 

In order to demonstrate experimentally the uniform rotation mode, the angular 
dependence of the magnetization reversal has often been studied (see references 
in Ref. 2 ) .  However, a comparison of theory with experiment is difficult because 
magnetic particles often have a nonuniform magnetization state that is due to 
rather complicated shapes and surfaces, crystalline defects, and surface aniso- 
tropy. In general, for many particle shapes the demagnetization fields inside the 
particles are nonuniform leading to nonuniform magnetization states [ 2 ] .  An 
example is presented in Fig. 12 which compares typical hysteresis loop mea- 
surements of an elliptical Co particle, fabricated by electron beam lithography, 
with the prediction of the Stoner-Wohlfarth model (Fig. 12). Before magnetiza- 
tion reversal, the magnetization decreases more strongly than predicted because 
the magnetic configuration is not collinear as in the Stoner-Wohlfarth model, 
but instead presents deviations mainly near the particle surface. The angular 
dependence of the switching field agrees with the Stoner-Wohlfarth model only 
for angles 8 2 30" where nonlinearities and defects play a less important role 
[22 ,  591. 
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Figure 12. Hysteresis loops of a nanocrystalline elliptic Co particle of 70 x 50 x 25 nm3, The 
dashed line is the prediction of the Stoner-Wohlfarth model of uniform rotation of magnetization. 
The deviations are due to nonuniform magnetization states. 
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Studies of magnetization reversal processes in ultrathin magnetic dots with 
in-plane uniaxial anisotropy showed also switching fields that are very close to 
the Stoner-Wohlfarth model, although magnetic relaxation experiments clearly 
showed that nucleation volumes are by far smaller than an individual dot volume 
[49]. These studies show clearly that switching field measurements as a function 
of the angles of the applied field cannot be taken unambiguously as a proof of a 
Stoner-Wohlfarth reversal. 

The first clear demonstration of the uniform reversal mode has been found 
with Co nanoparticles [36], and BaFeO nanoparticles [37], the latter having a 
dominant uniaxial magnetocrystalline anisotropy. The three-dimensional angular 
dependence of the switching field measured on BaFeO particles of about 20 nm 
could be explained with the Stoner-Wohlfarth model taking into account the 
shape anisotropy and hexagonal crystalline anisotropy of BaFeO [38]. This 
explication is supported by temperature- and time-dependent measurements 
yielding activation volumes which are very close to the particle volume (Section 
IV). 

We present here the first measurements on individual cobalt clusters of 3 nm 
in diameter containing about a thousand atoms (Figs. 13 and 14) [39]. In order to 
achieve the needed sensitivity, Co clusters preformed in the gas phase are di- 
rectly embedded in a co-deposited thin Nb film that is subsequently used to 
pattern micro-SQUIDS. A laser vaporization and inert gas condensation source is 
used to produce an intense supersonic beam of nanosized Co clusters which can 
be deposited in various matrices under ultra-high-vacuum (UHV) conditions. 
Due to the low-energy deposition regime, clusters do not fragment upon impact 
on the substrate [60]. The niobium matrix is simultaneously deposited from a 
UHV electron gun evaporator leading to continuous films with a low concentra- 
tion of embedded Co clusters [61]. These films are used to pattern planar 
microbridge-DC-SQUIDS by electron beam lithography. The later ones allow 
us to detect the magnetization reversal of a single Co cluster for an applied 
magnetic field in any direction and in the temperature range between 0.03 and 
30K (Section 11. B). However, the desired sensitivity is only achieved for Co 
clusters embedded into the microbridges where the magnetic flux coupling is 
high enough. Due to the low concentration of embedded Co clusters, we have a 
maximum of 5 noninteracting particles in a microbridge which is 300nm long 
and 50 nm wide. We can separately detect the magnetization switching for each 
cluster. Indeed they are clearly different in intensity and orientation because of 
the random distribution of the easy magnetization directions. The cold mode 
method (Section II.B.5) in combination with the blind method (Section II.B.6) 
allows us to detect separately the magnetic signal for each cluster. 

High-resolution transmission electron microscopy observations showed that 
the Co clusters are well-crystallized in a6c .c .  structure (Fig. 13) with a sharp 
size distribution [61]. They mainly form truncated octahedrons (Fig. 14) [39]. 
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Figure 13. High-resolution transmision electron microscopy observation along a [ 1 101 direc- 
tion of 3-nm cobalt cluster exhibiting an ~ c . c .  structure. 

Figure 15 displays a typical measurement of switching fields in three 
dimensions of a 3-nm Co cluster at T=35 mK. This surface is a three- 
dimensional picture directly related to the anisotropy involved in the magnetiza- 
tion reversal of the particle (Section 111. A). It can be reasonably fitted with the 
generalized Stoner and Wohlfarth model [54] (Section I1I.A. 1). We obtain the 
following anisotropy energy: 

(3.11) 2 2 2  2 2  2 2  Eo(rii)/v = -Kim, + K2m: - K4(m,,m,8 + m,,m,, + m,,m;,) 

where K1 and Kl are the anisotropy constants along z and x, the easy and hard 
magnetization axis, respectively. K4 is the forth order anisotropy constant and 
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Figure 14. Scheme of a typical cluster shape with light-gray atoms belonging to the 1289 atoms 
truncated octahedron basis and dark-gray atoms belonging to the (1 11) and (001) added facets. 

the (x'y'z') coordinate system is deduced from (xyz)  by a 45" rotation around the 
z axis. We obtained K ,  = 2 . 2  x 105J/m3, K2=0.9 x lo5 J/m3, and K4= 
0.1 x lo5 J/m3. The corresponding theoretical surface is showed in Fig. 16. 
Furthermore, we measured the temperature dependence of the switching field 
distribution (Section IV.C.2). We deduced the blocking temperature of the par- 
ticle TB M 14 K, and the number of magnetic atoms in this particle: N M  1500 
atoms (Section IV.C.2). Detailed measurements on about 20 different particles 
showed similar three-dimensional switching field distributions with comparable 
anisotropy ( K ,  = (2.0 i 0.3) x lo5 J/m3, (K2 = (0.8 i 0.3) x lo5 J/m3, and 
(K4 = (0.1 * 0.05) x lo5 J/m3) and size ( N =  1500 f 200 atoms). 

In the following, we analyze various contributions to the anisotropy energy of 
the Co clusters. Fine structural studies using EXAFS measurements [61] were 
performed on 500-nm-thick niobium films containing a very low concentration 
of cobalt clusters. They showed that niobium atoms penetrate the cluster surface 
to almost two atomic monolayers because cobalt and niobium are miscible 
elements. Further magnetic measurements [61] on the same samples showed 
that these two atomic monolayers are magnetically dead. For this reason, we 
estimated the shape anisotropy of the typical nearly spherical deposited cluster 
in Fig. 14 after removing two atomic monolayers from the surface. By calculat- 
ing all the dipolar interactions inside the particle assuming a bulk magnetic 
moment of pa: = 1 .7pB, we estimated the shape anisotropy constants: 
K 1  GZ 0.3 x lo5 J/m3 along the easy magnetization axis and K2 % 0.1 x 105J/m3 



Figure 15. Top view and side view of the experimental three-dimensional angular dependence 
of the switching field of a 3-nm Co cluster at 35 mK. This surface is symmetrical with respect to the 
H,-H, plane, and only the upper part (po H: > 0 T) is shown. Continuous lines on the surface are 
contour lines on which po HZ is constant. 
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Figure 16. Top view and side view of the theoretical switching field surface considering 
second- and fourth-order terms in the anisotropy energy. 
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along the hard magnetization axis. These values are much smaller than the 
measured ones which means that is not the main cause of the second- 
order anisotropy in the cluster. 

The fourth-order term K4 = 0.1 x los J/m' should arise from the cubic mag- 
netocrystalline anisotropy in the 8c.c. cobalt clusters. However, this value is 
smaller than the values reported in previous works [62, 631. This might by 
due to the different atomic environment of the surface atoms with respect to 
that of bu1kf.c.c. Co. Taking the value of the bulk [62, 631, (Kbulk = 1.2 x lo5 J/ 
m3 only for the core atoms in the cluster, we find KMc M 0.2 x lo5 J/m3, which 
is in reasonable agreement with our measurements. 

We expect that the contribution of the magnetoelastic anisotropy energy KMc 
coming from the matrix-induced stress on the particle is also small. Indeed, 
using the co-deposition technique, niobium atoms cover uniformly the cobalt 
cluster creating an isotropic distribution of stresses. In addition, they can relax 
preferably inside the matrix and not in the particle volume because niobium is 
less rigid than cobalt. We believe therefore that only interface anisotropy Krurface 
can account for the experimentally observed second-order anisotropy terms. 
Niobium atoms at the cluster surface might enhance this interface anisotropy 
through surface strains and magnetoelastic coupling. This emphasizes the domi- 
nant role of the surface in nanosized systems. 

In conclusion, the three-dimensional switching field measurements of indivi- 
dual clusters give access to their magnetic anisotropy energy. A quantitative 
understanding of the latter is still difficult, but it seems that the cluster-matrix 
interface provides the main contribution to the magnetic anisotropy. Such inter- 
facial effects could be promising to control the magnetic anisotropy in small 
particles in order to increase their blocking temperature up to the required range 
for applications. 

3. Uniform Rotation With Cubic Anisotropy 

We have seen in the previous section that the magnetic anisotropy is often 
dominated by second-order anisotropy terms. However, for nearly symmetric 
shapes, fourth-order terms* can be comparable or even dominant with respect to 
the second-order terms. Therefore, it is interesting to discuss further the features 
of fourth-order terms. We restrict the discussion to the 2D problem [54, 641 (see 
Ref. 55 for 3D). 

The reversal of the magnetization is described by Eq. (3.3) which can be 
rewritten in 2D: 

*For example. the fourth-order terms of$c.c. magnetocrystalline anisotropy 
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where v and M ,  are the magnetic volume and the saturation magnetization of the 
particle, respectively, 0 is the angle between the magnetization direction and x, 
H, and H ,  are the components of the external magnetic field along x and y, 
and Eo(0) is the magnetic anisotropy energy. The conditions of critical fields 
(2E/a0 = 0 and aE2/20’ = 0) yield a parametric form of the locus of switching 
fields: 

(3.13) 

(3.14) 

As an example we study a system with uniaxial shape anisotropy and cubic 
anisotropy. The total magnetic anisotropy energy can be described by 

Eo(0)  = VKI sin2(0+0o) +vK2sin2(0)cos2(0) (3.15) 

where K1 and K2 are anisotropy constants (K1 could be a shape anisotropy and 
K2 the cubic crystalline anisotropy of afc.c.  crystal.) 00 is a constant which 
allows to turn one anisotropy contribution with respect to the other one. Figure 
17 displays an example of a critical curve which can easily be calculated from 
Eqs. (3.13) to (3.15). When comparing the standard Stoner-Wohlfarth astroid 
(Fig. 10) with Fig. 17, we can realize that the critical curve can cross itself 
several times. In this case, the switching field of magnetization depends on the 
path followed by the applied field. In order to understand this point, let us follow 
the energy potential [Eq. (3.131, when sweeping the applied field as indicated in 
Fig. 18. When the field is in A, the energy E has two minima and the magnetiza- 
tion is in the metastable potential well. As the field increases, the metastable 
well becomes less and less stable. Let us compare two paths, one going along 
A + B1+ C --f D + E, the other over B2 instead of B1. Figure 19 shows E in 
the vicinity of the metastable well for different field values along the considered 
paths (the stable potential well is not presented). One can realize that the state of 
the magnetization in C depends on the path followed by the field: Going over B ,  
leads to the magnetization state in the left metastable well (l),  whereas going 
over B2 leads to the right metastable well (2) .  The latter path leads to magne- 
tization switching in D, and the former one leads to a switching in E. Note that a 
small magnetization switch happens when reaching B I  or B2. Point I is a super- 
critical bifurcation. 
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Figure 17. Angular dependence of the switching field obtained from Eqs. (3.13) to (3.15) with 
K,>O and KZ = -2 /3K, .  The field is normalized by the factor 2 K , / ( p a , ) ,  
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Figure 18. Enlargement of angular dependence of the switching field of Fig. 17. Two possible 
paths of the applied field are indicated: Starting from point A and going over the point B ,  leads to 
magnetization reversal in E, wherea? going over the point B2 lead? to reversal in D. 

The first measurement of such a field path dependence of the switching field 
were performed on single-domain FeCu nanoparticles of about 15 nm with a 
cubic crystalline anisotropy and a small arbitrarily oriented shape anisotropy 
[65] .  Figure 20 presents switching field measurements of a 15-nm cobalt nano- 
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1 

Figure 19. Scheme of the potential energy near the metastable state for different applied fields 
as indicated in Fig. 18. The balls represent the state of the magnetization, and the arrows locate the 
appearing or disappearing well. 

particle showing clearly a contribution of cubic crystalline anisotropy and the 
field path dependence of the switching field. 

B. Nonuniform Magnetization Reversal 

We have seen in the previous sections that for extremely small particles, mag- 
netization should reverse by uniform rotation. For somewhat larger single- 
domain particles, nonuniform reversal modes are more likely. The simplest 
one is the curling mode that is discussed in the following section. 

1. Magnetization Reversal by Curling 

The simplest nonuniform reversal mode is the curling reversal mode [2, 661. The 
critical parameter is the exchange length h = &/M,, delimiting the region of 
uniform rotation and curling (A is the exchange constant). Therefore in the case 
of the size R > h ( R  is, for example, the radius of a cylinder), magnetization 
reversal via curling is more favorable. In the following, we review the analytical 
result of an ellipsoid of rotation, which can be applied approximately to most of 
the shapes of nanoparticles or nanowires [67]. 
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Figure 20. Angular dependence of the switching field of a 15-nm Co nanoparticle showing a 
strong influence of cubic crystalline anisotropy. 

The variation of the switching field with the angle 8 (defined between the 
applied field and the long axis of the ellipsoid) is given by [68] 

(3.16) M Q X Q ,  

2 Ja: sin 28 + a-: cos 2 8  
HP, = -2 

where ax,z = 2 N,,, - klS2, NsSz are the demagnetization factors, S =RIA, and R is 
the minor semiaxis of the ellipsoid. The parameter k is a monotonically decreas- 
ing function of the aspect ratio of the ellipsoid. This function is plotted in Fig. 1 
of Ref. 69. The smallest and highest value of k is that for an infinite cylinder 
( k  = 1.079) and a sphere ( k  = 1.379), respectively. 

For a long ellipsoid of rotation, the demagnetization factors are given by 

(3.17) 
1 - N ,  

2 
l n ( n -  1 +m). N,  =- N z = - -  

n2 - 1 Jm 
1 

where n is the ratio of the length to the diameter. 
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For an infinite cylinder, Eq. (3.16) becomes [66, 701 

Ms ht(1 + hr) H o  =- sw 2 Jhf + ( I  + 2hr) cos 20 
(3.18) 

where hr = - 1 .079/S2. Equation (3.18) is a good approximation for a very long 
ellipsoid of rotation. It is plotted in Fig. 21 for several radii of an infinite 
cylinder. 

The case of uniform rotation of magnetization was generalized by Thiaville 
to an arbitrary anisotropy energy function and to three dimensions (Section 
1II.A. 1). For the curling mode, this generalization is not possible. However, 
approximated calculations were proposed [67, 71, 721 and micromagnetic simu- 
lations were performed [73]. 

2.  Experimental Evidence f o r  Magnetization Reversal by Curling 

We report here the first studies of isolated nanoscale wires with diameters 
smaller than 100nm, for which single-domain states could be expected [35, 
741. The cylindrical geometry, with its large shape anisotropy, is well-suited 

90" 

- 90" 

Figure 21. Angular dependence of the switching field of an infinite cylinder for several reduced 
cylinder radii S. For S<1, the switching field is given by the uniform rotation mode (Section 1II.A). 
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for comparison with theory. Ni wires were produced by filling electrochemically 
the pores of commercially available nanoporous track-etched polycarbonate 
membranes of thicknesses of 10pm. The pore size was chosen in the range of 
30 to lOOnm [75, 761. In order to place one wire on the SQUID detector, we 
dissolved the membrane in chloroform and put a drop on a chip of some hun- 
dreds of SQUIDS. Magnetization measurements were performed on SQUIDs 
with a single isolated wire (Fig. 1). 

The angular dependence of the switching field of wires with 45- and 92-nm 
diameter are shown in Fig. 22. These measurements are in quantitative agree- 
ment with the curling mode [Eq. (3.16)]. Nevertheless, dynamical measurements 
showed a nucleation volume that is much smaller than the wire volume [35,  741 
(Section IV.C.3). Therefore, we believe that the magnetization reversal starts 
close to curling instability, but the nucleation happens in a small fraction of the 
wire only, then rapidly propagating along the whole sample. This picture is also 
in good agreement with micromagnetic simulations [73] and the micromagnetic 
model of Braun [77].* 

90" 

- 90" 

Figure 22. Angular dependence of the switching field of two Ni wires with a diameter of 45 nm 
and 92 nrn, that is, S = 1.4 and 2.4. The switching fields are normalized by 125 mT and 280 mT, 
respectively. 

*Note that the curling model only predicts an instability. There has never been a claim to describe what 
happens afterwards [2 ] .  
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The angular dependence of the switching field of Ni wires with larger dia- 
meters (270-450nm) were measured at room temperature by Lederman et al. 
[78]. Their results could roughly be explained by the curling mode. 

3. Magnetization Reversal by Nucleation and Annihilation 
of Domain Walls 

For magnetic particles that have at least two dimensions much larger than the 
domain wall width, the magnetization reversal may occur via nucleation/propa- 
gation and annihilation of one or several domain walls happening at two or more 
applied fields. We focus here on a 30-nm-thick elliptic Co particle defined by 
electron beam lithography and lift-off techniques out of sputtered thin films 
(inset of Fig. 23) [79]. The Co film has a nanocrystalline structure leading to 
a magnetically soft material with a coercive field value of 3 mT at 4 K. Therefore 
we neglected the magnetocrystalline anisotropy. The nanofabricated particles 
have an elliptic contour with in-plane dimensions of 300nm x 200nm and a 
thickness of 30 nm. 

In order to study the domain structure of our particles, we measure the 
angular dependence of hysteresis loops. Figure 23 shows a typical hysteresis 
loop of an individual Co particle. The magnetic field is applied in the plane of 
the particle. The hysteresis loop is mainly characterized by two magnetization 
jumps. Starting from a saturated state, the first jump can be associated with 
domain wall nucleation and the second jump can be associated with domain 
wall annihilation. During these jumps, the magnetization switches in less than 
100 ps (our time resolution, see Section II.B.4). The reversible central region of 
the hysteresis loops is evidence for the motion of the domain wall through the 
particle. 

The simplest domain structure, showing such a hysteresis loop, has been 
proposed by van den Berg [80] in zero field and calculated for fields smaller 
than the saturation field by Bryant and Suhl [81].* This domain structure has 
been observed experimentally on low anisotropy circular thin film disks (1 00 pm 
in diameter) using high-resolution Kerr techniques [82]. In zero field, the par- 
ticle has a vortex-like domain wall as shown in Fig. 23. When a magnetic field is 
applied, this domain wall is pushed to the border of the particle. For higher fields 
the domain wall is annihilated and the particle becomes single domain. The main 
conditions of the van den Berg model are (i) that the magnetic material is very 
soft and (ii) that the system is two-dimensional. The first condition is satisfied by 
our particles because they are made of a randomly oriented nanocrystallized Co, 
being very soft. The second condition is not quite well satisfied however, MFM 
measurements confirmed this domain structure [83]. Furthermore, we obtained 

*Note that these models are 2D and neglect the domain wall width. Therefore. they can give only a 
qualitative description. 
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Figure 23. Hysteresis loops at 0.1 K of the elliptic Co particle seen in the inset which shows the 
electron micrograph of the wire of the SQUID loop with a Co particle (300 nm x 200nm x 30 nm). 
The in-plane field is applied along the long axis of the particles. The domain wall structure in an 
elliptical particle is also presented schematically as proposed by van den Berg. Arrows indicate the 
spin direction. The two small magnetization jumps near z i 5 mT might be due to the reversal of 
the center vortex of the domain structure. 

similar results for thinner particles (10 and 20 nrn). More complicated domain 
structures as proposed by van den Berg [79,80] may be excluded by the fact that 
similar Co particles of length smaller than 200nm are single domain [22, 591. 

After studying the magnetization reversal of individual particles, the question 
arises as to how the properties of a macroscopic sample are based on one- 
particle properties. In order to answer this question, we fabricated a sample 
consisting of 1.8 x lo7 nearly identical elliptic Co particles of about the same 
dimensions and material as the individual particle studied above. These particles 
are placed on an Si substrate with a spacing of 2prn. Because of this large 
spacing, dipole interactions between particles are negligible. Figure 24 shows 
the hysteresis loop of the array of Co particles when the field is applied parallel 
to the long axis of the particle. This hysteresis loop shows the same character- 
istics as the hysteresis loop of one particle (Fig. 23) that is, nucleation and 
annihilation of domain walls. Because of switching field distributions mainly 
due to surface defects and a slight distribution of particle sizes, shapes, and so 
on, the domain wall nucleation and annihilation are no longer discontinuous 
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Figure 24. Hysteresis loops of the magnetic moment of the array of 1.8 x 10’ Co particles 
(300 nrn x 200 nin x 30 nm). The in-plane field is applied along the long axis of the particles. 

although still irreversible. They take place along continuous curves with a width 
of about 10mT. 

IV. INFLUENCE OF TEMPERATURE ON THE 
MAGNETIZATION REVERSAL 

The thermal fluctuations of the magnetic moment of a single-domain ferromag- 
netic particle and its decay towards thermal equilibrium were introduced by NCel 
[9, 101 and further developed by Bean and Livingston [84, 851 and Brown 
[86-881. The simplest case is an assembly of independent particles having no 
magnetic anisotropy. In the absence of an applied magnetic field, the magnetic 
moments are randomly oriented. The situation is similar to paramagnetic atoms 
where the temperature dependence of the magnetic susceptibility follows a Curie 
behavior, and the field dependence of magnetization is described by a Brillouin 
function. The only difference is that the magnetic moments of the particles are 
much larger than those of the paramagnetic atoms. Therefore, the quantum 
mechanical Brillouin function can be replaced by the classical limit for larger 
magnetic moments, namely the Langevin function. This theory is called 
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superparamagnetism. The situation changes, howe\,er, as soon as magnetic ani- 
sotropy is present which establishes one or more preferred orientations of the 
particle's magnetization (Section 111). In the following, we present an overview 
over the simplest model describing thermally activated magnetization reversal of 
single isolated nanoparticles which is called the Neel-Brown model. After a 
brief review of the model (Section IV. A), we present experimental methods to 
study the thermally activated magnetization reversal (Section IV. B). Finally, we 
discuss some applications of the NCel-Brown model (Section 1V.C). 

A. Neel-Brown Model of Thermally Activated 
Magnetization Reversal 

In Nee1 and Brown's model of thermally activated magnetization reversal, a 
single-domain magnetic particle has two equivalent ground states of opposite 
magnetization separated by an energy barrier which is due to shape and crystal- 
line anisotropy. The system can escape from one state to the other by thermal 
activation over the barrier. Just as in the Stoner-Wohlfarth model, they assumed 
uniform magnetization and uniaxial anisotropy in order to derive a single 
relaxation time. Nee1 supposed further that the energy barrier between the two 
equilibrium states is large in comparison to the thermal energy kBT which 
justified a discrete orientation approximation [9, lo]. Brown criticized Neel's 
model because the system is not explicitly treated as a gyromagnetic one 
[86-881. Brown considered the magnetization vector in a particle to wiggle 
around an energy minimum, then jump to the vicinity of the other minimum, 
then wiggle around there before jumping again. He supposed that the orientation 
of the magnetic moment may be described by a Gilbert equation with a random 
field term that is assumed to be white noise. On the basis of these assumptions, 
Brown was able to derive a Fokker-Planck equation for the distribution of 
magnetization orientations. Brown did not solve his differential equation. In- 
stead he tried some analytic approximations and an asymptotic expansion for the 
case of the field parallel or perpendicular to the easy axis of magnetization. More 
recently, Coffey et al. [89, 901 found by numerical methods an exact solution of 
Brown's differential equation for uniaxial anisotropy and an arbitrary applied 
field direction. They also derived an asymptotic general solution for the case of 
large energy barriers in comparison to the thermal energy ksT. This asymptotic 
solution is of particular interest for single-particle measurements and is reviewed 
in the following. 

For a general asymmetric bistable energy potential E = E(G. fi) [Eq. (3.3)] 
with the orientation of magnetization 6 = G/Ms ( M ,  is the spontaneous mag- 
netization), 6 is the applied field, and with minima at n ' l  and n'2 separated by a 
potential barrier containing a saddle point at n'o (with the Zl coplanar), and in the 
case of p(Eo-E,) >> 1 where J3 = l/kBT, and El = E(n',, 6), Coffey et al. showed 



CLASSICAL AND QUANTUM MAGNETIZATION REVERSAL 137 

that the longest relaxation time" is given by the following equation which is 
valid in the intermediate to high damping limit (IHD) defined by CA p (Eo-Ei)> 1 
[91]: 

where wo and Q0 are the saddle and damped saddle angular frequencies: 

w1 and w2 are the well angular frequencies: 

with i =  1 and 2. cy) and cp' ( j = O ,  1, 2) are the coefficients in the truncated 
Taylor series of the potential at well and saddle points-that is, the curvatures of 
the potential at well and saddle points. y is the gyromagnetic ratio, CA = v y M ,  is 
the dimensionless damping factor and v is the friction in Gilbert's equation 
(ohmic damping). 

Whereas in the low damping limit (LD), defined by a p(Eo- Ei) < 1, the 
longest relaxation time is given by [92, 931 

In this case, the energy dissipated in one cycle of motion in the well is very small 
in comparison to the thermal energy kBT. 

Experimentally, relaxation is observed only if T is of the order of magnitude 
of the measuring time of the experiment. This implies for all known single- 
particle measurement techniques that P(E0- Ei) >> 1; that is, the asymptotic 
solutions (4.1) and (4.5) are always a very good approximation to the exact 

*The inverse of the longest relaxation time is determined by the smallest nonvanishing eigenvalue of 
the appropriate Fokker-Planck equation [89, 901. All other eigenvalues can be neglected in the 
considered asymptotic limit of ~ ( E o -  E,) >> 1. 
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solution of Brown's Fokker-Planck equation [94]. Due to an applied field, 
P(Eo-EI) >> P(Eo-E2) (taking E2 as the metastable minimum) might be true. 
Then the first exponential in Eq. (4.1) and (4.5) can be neglected. 

Concerning the possible values of c1, we remark that little information is 
available. Typical values should be between 0.01 and 5 [8], meaning that in 
practice xP(Eo-E,) can be >>I, <<I,  or zz 1. Thus the distinction between Eqs. 
(4. I )  and (4.5) becomes important. 

Finally, we note that cf)  and c t )  0' = 0, 1, 2 )  can be found experimentally by 
measuring the critical surface of the switching field and applying the calculation 
of Thiaville (Section III.A.l) [55 ] .  

B. Experimental Methods for the Study of the Neel-Brown Model 

As discussed in the previous section, in the Neel-Brown model of thermally 
activated magnetization reversal a single-domain magnetic particle has two 
equivalent ground states of opposite magnetization separated by an energy bar- 
rier due to, for instance, shape and crystalline anisotropy. The system can escape 
from one state to the other either by thermal activation over the barrier at high 
temperatures or by quantum tunneling at low temperatures (Section V). At 
sufficiently low temperatures and at zero field, the energy barrier between the 
two states of opposite magnetization is much too high to observe an escape 
process. However, the barrier can be lowered by applying a magnetic field in 
the opposite direction to that of the particle's magnetization. When the applied 
field is close enough to the switching field at zero temperature H:,+,, thermal 
fluctuations are sufficient to allow the system to overcome the barrier, and the 
magnetization is reversed. 

In the following, we discuss three different experimental methods for study- 
ing this stochastic escape process which are called waiting time, switching field, 
and telegraph noise measurements. 

I .  Waiting Time Measurements 

The waiting time method consists in measuring the probability that the magne- 
tization has not switched after a certain time. In the case of an assembly of 
identical and isolated particles, it corresponds to measurements of the relaxation 
of magnetization. However, in most particle assemblies, broad distributions of 
switching fields lead to logarithmic decay of magnetization, and the switching 
probability is hidden behind the unknown distributions functions [8]. For indi- 
vidual particle studies, waiting time measurements give direct access to the 
switching probability (Fig. 25). At a given temperature, the magnetic field H 
is increased to a waiting field H ,  near the switching field HP,. Next, the elapsed 
time until the magnetization switches is measured. This process is repeated 
several hundred times, yielding a waiting time histogram. The integral of this 
histogram and proper normalization yields the probability that the magnetization 
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(a) Waiting time measurement 

H = const. 
T = const. p(t)lk 

0 

(b) Switching field measurement 

<H,,(dH,/dt,T)> 

dH/dt = const. 7yb 2o(dH/dt,T) 

T = const 

H 

(c) Telegraph noise measurement 

t 

Figure 25. Schema of three methods for studying the escape from a potential well: waiting 
time and telegraph noise measurements give direct access to the switching time probability P( t ) ,  
whereas switching field measurements yield histograms of switching fields. 

has not switched after a time t. This probability is measured at different waiting 
fields H ,  and temperatures in order to explore several barrier heights and ther- 
mal activation energies. 

According to the NCel-Brown model, the probability that the magnetization 
has not switched after a time t is given by 

P ( t )  = (4.6) 
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and T (inverse of the switching rate) can be expressed by an Arrhenius law of the 
form 

where E = (1  - H / H Q , )  and A,  B,  a, and b depend on damping, temperature, 
energy barrier height [Eqs. (3.5)-(3.10) and (4.1)-(4.91, curvatures at well and 
saddle points, and reversal mechanism (thermal or quantum) (cf. Table 1 of Ref. 
95). For simplicity, experimentalists have often supposed a constant pre-expo- 
nential factor ~ i '  instead of BE'-'-'. 

The adjustment of Eq. (4.6) to the measured switching probabilities yields a 
set of mean waiting times T-'(H,, 73. In order to adjust the NCel-Brown model 
to this set of data, we propose the following relation that can be found by 
inserting E = (1 - H,/He,) into Eq. (4.7): 

When plotting the H ,  values as a function of [T In (T B E ' + ~ " ) ] ' " ,  all points 
should gather on a straight line (master curve) by choosing the proper value for 
the constants B,  a, and b [a and b should be given by Eqs. (3.5)-(3.10) and 
(4.1)-(4.31. A can be obtained from the slope of the master. 

The number of exploitable decades for T values is limited for waiting time 
measurements: Short-time (milliseconds) experiments are limited by the induc- 
tance of the field coils" and long-time (minutes) studies by the stability of the 
experimental setup. Furthermore, the total acquisition time for a set of rC'(H,, 
7J is rather long (weeks). Thus a more convenient method is needed for single- 
particle measurements-namely, the switching field method. 

2. Switching Field Measurements 

For single-particle studies, it is often more convenient to study magnetization 
reversal by ramping the applied field at a given rate and measuring the field 
value as soon as the particle magnetization switches. Next, the field ramp is 
reversed and the process repeated. After several hundred cycles, switching field 
histograms are established, yielding the mean switching field (Hsw)  and the 
width os, (rms deviation). Both mean values are measured as a function of 
the field sweeping rate and temperature (Fig. 25).  

From the point of view of thermally activated magnetization reversal, switch- 
ing field measurements are equivalent to waiting time measurements because the 

*A solution to this problem might be a superposition of a constant applied field and a small pulse field. 
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time scale for the sweeping rate is typically more than 8 orders of magnitude 
greater than the time scale of the exponential prefactor, which is in general around 
loplo s. We can therefore apply the Neel-Brown model described above. The 
mathematical transformation from a switching time probability [Eqs.(4.6)-(4.7)] 
to a switching field probability was first given by Kurkijarvi [96] for the critical 
current in SQUIDS. A more general calculation was evaluated by Garg [95]. In 
many cases, the mean switching field (HFW) can be approximated by the first two 
terms of the development of Garg [95]: 

where the field sweeping rate is given by v = dHldt. The width of the switching 
field distribution osw can be approximated by the first term of Garg's 
development: 

In the case of a constant preexponential factor r i  I ,  the calculation of (Hsw) and 
osw is more simple and is given by Eqs. (4) and (5) in Ref. 36, respectively. 

Similar to the waiting time measurements, a scaling of the model to a set of 
(H,,(T, v)) values can be done by plotting the (H,,(T, v)) values as a function of 
[T ln((H~~,B)/(vaA1phlU))]l '" .  All points should gather on a straight line by 
choosing the proper value for the constants [a and b should be given by Eqs. 
(3.5)-( 3.10) and (4.1)-(4.31. 

the following equation [96]: 
The entire switching field distribution P(H) can be calculated iteratively by 

P ( H )  = T-'(H)v-' (4.11) 

3. Telegraph Noise Measurements 

In order to study the superparamagnetic state* of a single particle, it is simply 
necessary to measure the particle's magnetization as a function of time. We call 

*At zero applied field, a single-domain magnetic particle has two equivalent ground states of opposite 
magnetization separated by an energy barrier. When the thermal energy kBT is sufficiently high, the 
total magnetic moment of the particle can fluctuate thermally, like a single spin in a paramagnetic 
material. Such magnetic behavior of an assembly of independent single-domain particles is called 
superparamagnetism [8, 84. 851. 
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this telegraph noise measurement as stochastic fluctuations between two states 
are expected. According to the Neel-Brown model, the mean time T spent in one 
state of magnetization is given by an Arrhenius law of the form of Eq. (4.7). As T 

increases exponentially with decreasing temperature, it is very unlikely that an 
escape process will be observed at low temperature. However, applying a con- 
stant field in direction of a hard axis (hard plane) of magnetization reduces the 
height of the energy barrier (Fig. 25). When the energy barrier is sufficiently 
small, the particle’s magnetization can fluctuate between two orientations which 
are close to a hard axis (hard plane) of magnetization. The time spent in each 
state follows an exponential switching probability law as given by Eqs. (4.6) and 
(4.7) with a = 2 [Eq. (3.8)1.* 

C. Experimental Evidence for the Neel-Brown Model 

The Neel-Brown model is widely used in magnetism, particularly in order to 
describe the time dependence of the magnetization of collections of particles, 
thin films, and bulk materials. However until recently, all the reported measure- 
ments, performed on individual particles, were not consistent with the Neel- 
Brown theory. This disagreement was attributed to the fact that real samples 
contain defects, ends, and surfaces that could play an important, if not dominant, 
role in the physics of magnetization reversal. It was suggested that the dynamics 
of reversal occurs via a complex path in configuration space, and that a new 
theoretical approach is required to provide a correct description of thermally 
activated magnetization reversal even in single-domain ferromagnetic particles 
[19, 591. Similar conclusions were drawn from numerical simulations of the 
magnetization reversal [97-1011. 

A few years later, micro-SQUID measurements on individual Co nanoparti- 
cles showed for the first time a very good agreement with the NCel-Brown 
model by using waiting time, switching field, and telegraph noise measurements 
[36-391. It was also found that sample defects, especially sample oxidation, play 
a crucial role in the physics of magnetization reversal. 

In the following subsections, we review some typical results concerning 
nanoparticles (Section 1V.C. l) ,  clusters (Section IV.C.2), and wires (Section 
IV.C.3). In Section IV.C.4, we point out the main deviations from the Neel- 
Brown model which are due to defects. 

1. Application to Nanoparticles 

One of the important predictions of the NCel-Brown model concerns the expo- 
nential not-switching probability P( t )  [Eq. (4.6)] which can be measured directly 
via waiting time measurements (Section 1V.B. 1): At a given temperature, the 

*Note that for a slightly asymmetric energy potential, one switching probability can be so long that 
two-level fluctuation becomes practically unobservable. 



CLASSICAL AND QUANTUM MAGNETIZATION REVERSAL 143 

magnetic field is increased to a waiting field H ,  which is close to the switching 
field. Then, the elapsed time is measured until the magnetization switches. This 
process is repeated several hundred times, in order to obtain a waiting time 
histogram. The integral of this histogram gives the not-switching probability 
P( t )  which is measured at several temperatures Tand waiting fields H,. The inset 
of Fig. 26 displays typical measurements of P( t )  performed on a Co nanoparticle. 
All measurements show that P( t )  is given by an exponential function described by 
a single relaxation time 7. 

The validity of Eqs. (3.5) and (4.7) is tested by plotting the waiting field H, as 
a function of [Tln ( T / T ~ ) ] ~ ’ ~ . *  If the NCel-Brown model applies, all points should 
collapse onto one straight line (master curve) by choosing the proper values for 
to. Figure 26 shows that the data set .r(H,,T) falls on a master curve provided that 
x0 zz 3 x lop9 s. The slope and intercept yield the values Eo = 214,000 K and 
H:w = 143.05mT. The energy barrier Eo can be approximately converted to a 
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Figure 26. Scaling plot of the mean switching time .r(H,,T) for several waiting fields H,, and 
temperatures (0.1 s < T(H,,T) < 60s) for a Co nanoparticle. The scaling yields T ~ )  N 3 x 10-’s. 
Inser: Examples of the probability of not-switching of magnetization as a function of time for 
different applied fields and at 0.5 K. Full lines are data fits with an exponential function: 
p(r) = e-r’T. 

*a = 3/2 because the field was applied at about 20‘ from the easy axis of magnetization [Eq. ( 3 . 5 ) ] .  
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thermally “activated volume” by using V = Eo/(poMsH:,,) z (25 nm)’ which 
is very close to the particle volume estimated by SEM. This agreement is 
another confirmation of a magnetization recersal by uniform rotation. The result 
of the waiting time measurements are confirmed by switching field and tele- 
graph noise measurements [36, 371. The field and temperature dependence of the 
exponential prefactor T~ is taken into account in Ref. 90. 

2.  Application to Co Clusters 

Figure 27 presents the angular dependence of the switching field of a 3-nm Co 
cluster measured at different temperatures. At 0.03 K, the measurement is very 
close to the standard Stoner-Wohlfarth astroid (Fig. 10). For higher tempera- 
tures the switching field becomes smaller and smaller. It reaches the origin at 
about 14 K, yielding the blocking temperature TB = 14 K of the cluster 
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Figure 27. Temperature dependence of the switching field of a 3-nm Co cluster. measured in 
the plane defined by the easy and medium hard axes ( H , - H ,  plane in Fig. 15). The data were 
recorded using the blind mode method (Section II.B.6) with a waiting time of the applied field of 
A r = 0 . 1  s. The scattering of the data is due to stochastic and in good agreement with Eq. (4.10). 
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magnetization. TB is defined as the temperature for which the waiting time At 
becomes equal to the relaxation time T of the particle's magnetization at fi = 6. 
TB can be used to estimate the total number N,,, of magnetic Co atoms in the 
cluster. Using an Arrhenius-like law [Eq. (4.7)] which can be written as 
At = T = T~ exp(K,, Nlot/kBTB), where T;' is the attempt frequency typically 
between 10" to 10" Hz [102], K,, is an effective anisotropy energy per atom 
and kB is the Boltzmann constant. Using the expression of the switching field at 
T= 0 K and for 8 = 0: pOHsIL = 2K,,/par = 0.3 T (Fig. 27), the atomic moment 
pa,= 1.7pB, At=0.01 s, TO= 10-los, and TB= 14K, we deduce ~ , , , ~ 1 5 0 0 ,  
which corresponds very well to a 3-nm Co cluster (Fig. 13). 

Figure 28 presents a detailed measurement of the temperature dependence of 
the switching field at 0" and 45" and for three waiting times At. This measure- 
ment allows us to check the predictions of the field dependence of the barrier 
height. Equation (4.9) predicts that the mean switching field should be propor- 
tional to TI" where a depends on the direction of the applied field [Eqs. (3.5) to 
(3.10)]: a = 2 for 8 = 0" and 90", and a = 3/2 for all other angles which are not 
too close to 8=0" and 90". We found a good agreement with this model 
(Fig. 29). 
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Figure 28. Temperature dependence of the switching field of a 3-nm Co cluster, measured at 0" 
and 45". The data were recorded using the blind mode method (Section II.B.6) with different waiting 
time Af of the applied field. The scattering of the data is due to stochastics and is in good agreement 
with Eq. (4.10). 
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Figure 29. Temperature dependence of the switching field of a 3-nm Co cluster as in Fig. 28 but 
plotted as a function of (TIT,)"" with TB = 14 K and n = 2 or 3/2 for 0 = 0" and 45", respectively, and 
for three waiting times At, 

3. Application to Ni Wires 

Electrodeposited wires (with diameters ranging from 40 to 100 nm and lengths 
up to 5000nm; see Fig.1) were studied [35, 741 using the micro-SQUID tech- 
nique (Section III.B.2). For diameter values under 50 nm, the switching prob- 
ability as a function of time could be described by a single exponential function 
[Eq. (4.6)]. The mean waiting time T followed an Arrhenius law [Eq. (4.7)] as 
proposed by the Neel-Brown model. Temperature and field sweeping rate de- 
pendence of the mean switching field could be described by the model of 
Kurkijarvi (Section IV.B.2) which is based on thermally assisted magnetization 
reversal over a simple potential barrier. These measurement allowed us to esti- 
mate an activation volume which was two orders of magnitude smaller than the 
wire volume. This confirmed the idea of the reversal of the magnetization caused 
by a nucleation of a reversed fraction of the cylinder, rapidly propagating along 
the whole sample. This result was also in good agreement with a micromagnetic 
model of Braun [77]. 

A pinning of the propagation of the magnetization reversal occurred for a few 
samples, where several jumps were observed in the hysteresis curves. The pin- 
ning of a domain wall was probably due to structure defects. The dynamic 
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Figure 30. Angular dependence of switching fields of a 3-nm Fe cluster having (probably) a 
slightly oxidized surface. Each point corresponds to one of the 10,000 switching field measurements. 
The huge variations of the switching field might be due to exchange bias of frustrated spin config- 
urations. However, quantum effects like those described in Section V are not completely excluded. 

reversal properties of depinning were quite different from those of nucleation of 
a domain wall. For example, the probability of depinning as a function of time 
did not follow a single exponential law. A similar effect was also observed in 
single submicron Co particles having one domain wall [79], showing a domain 
wall annihilation process (Section III.B.3). 

4. Deviations From the Nkel-Brown Model 

Anomalous magnetic properties of oxidized or ferrimagnetic nanoparticles have 
been reported previously by several authors [103, 1041. These properties are, for 
example, the lack of saturation in high fields and shifted hysteresis loops after 
cooling in the presence of a magnetic field. These behaviors have been attributed 
to uncompensated surface spins of the particles and surface spin disorder [105, 
1061. 

Concerning our single-particle studies, we systematically observed aging 
effects which we attribute to an oxidation of the surface of the sample, forming 
antiferromagnetic COO or NiO [59, 741. We found that the antiferromagnetic 
coupling between the core of the particle or wire and its oxidized surface 
changed the dynamic reversal properties. For instance, we repeated the 
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measurements of the magnetization reversal of a Ni wire two days after 
fabrication, six weeks after, and finally after three months [74]. Between these 
measurements, the wire stayed in a dry box. The quasi-static micro-SQUID 
measurements did reveal only small changes. The saturation magnetization 
measured after six weeks was unchanged and was reduced by one to two percent 
after three months. The angular dependence of the switching field changed also 
only slightly. The dynamic measurements showed the aging effects more clearly, 
as evidenced by 

A nonexponential probability of not switching 
An increase of the width of the switching field distributions 
A decrease of the activation energy 

We measured a similar behavior on lithographic fabricated Co particles with an 
oxidized border [59]. 

Figure 30 presents the angular dependence of switching fields of a 3-nm Fe 
cluster having a slightly oxidized surface. Huge variation of the switching fields 
can be observed which might be due to exchange bias of frustrated spin config- 
urations at the surface of the cluster (Fig. 31). 

Figure 31. Details of the angular dependence of switching fields of a 3-nm Fe cluster having 
(probably) a slightly oxidized surface. Each point corresponds to one of the 3000 switching field 
measurements. Stochastic fluctuation between different switching field distributions are observed. 
The “mean” hysteresis loop is shifted to negative fields. 
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We propose that the magnetization reversal of a ferromagnetic particle with 
an antiferromagnetic surface layer is mainly governed by two mechanisms 
which are both due to spin frustration at the interface between the ferromagnetic 
core and the antiferromagnetic surface layer(s). The first mechanism may come 
from the spin frustration differing slightly from one cycle to another, thus 
producing a varying energy landscape. These energy variations are less impor- 
tant at high temperatures when the thermal energy (ksT) is much larger. How- 
ever, at lower temperature the magnetization reversal becomes sensitive to the 
energy variations. During the hysteresis loop the system chooses randomly a 
path through the energy landscape which leads to broad switching field distribu- 
tions. A second mechanism may become dominant at high temperatures: the 
magnetization reversal may be governed by a relaxation of the spin frustration, 
hence by a relaxation of the energy barrier. This relaxation is thermally acti- 
vated-that is, slower at lower temperatures. 

V. MAGNETIZATION REVERSAL BY QUANTUM TUNNELING 

Studying the boundary between classical and quantum physics has become a 
very attractive field of research which is known as “mesoscopic” physics 
(Fig. 1). New and fascinating mesoscopic effects can occur when characteristic 
system dimensions are smaller than the length over which the quantum wave 
function of a physical quantity remains sensitive to phase changes. Quantum 
interference effects in mesoscopic systems have, until now, involved phase 
interference between paths of particles moving in real space as in SQUIDS or 
mesoscopic rings. For magnetic systems, similar effects have been proposed for 
spins moving in spin space, such as magnetization tunneling out of a metastable 
potential well or coherent tunneling between classically degenerate directions of 
magnetization [107, 1081. 

We have seen in the previous sections that the intrinsic quantum character of 
the magnetic moment can be neglected for nanoparticles with dimensions of the 
order of the domain wall width 6 and the exchange length A-that is, particles 
with a collective spin of S =  lo5 or larger. However, recent measurements on 
molecular clusters with a collective spin of S =  10 suggest that quantum phe- 
nomena might be observed at larger system sizes with S >> 1. Indeed, it has been 
predicted that macroscopic quantum tunneling of magnetization can be observed 
in magnetic systems with low dissipation. In this case, it is the tunneling of the 
magnetization vector of a single-domain particle through its anisotropy energy 
barrier or the tunneling of a domain wall through its pinning energy. These 
phenomena have been studied theoretically and experimentally [ 1081. 

The following sections review the most important results concerning the 
observed quantum phenomena in molecular clusters which are mesoscopic mod- 
el systems to test quantum tunneling theories and the effects of the 
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environmental decoherence. Their understanding requires a knowledge of many 
physical phenomena, and they are therefore particularly interesting for funda- 
mental studies. We then focus on magnetic quantum tunneling (MQT) studied in 
individual nanoparticles or nanowires. We concentrate on the necessary experi- 
mental conditions for MQT and review some experimental results which suggest 
that quantum effects might even be important in nanoparticles with S= lo5 or 
larger. 

A. Quantum Tunneling of Magnetization in Molecular Clusters 

Magnetic molecular clusters are the final point in the series of smaller and 
smaller units from bulk matter to atoms. Up to now, they have been the most 
promising candidates for observing quantum phenomena because they have a 
well-defined structure with well-characterized spin ground state and magnetic 
anisotropy. These molecules can be regularly assembled in large crystals where 
all molecules often have the same orientation. Hence, macroscopic measure- 
ments can give direct access to single molecule properties. The most prominent 
examples are a dodecanuclear mixed-valence manganese-oxo cluster with acet- 
ate ligands, short Mnlz  acetate [ 11 11, and an octanuclear iron(II1) 0x0-hydroxo 
cluster of formula [FeXO2(0H) lz(tacn)6]8 + where tacn is a macrocyclic ligand, 
short Fe8 (Fig. 32) [112]. Both systems have a spin ground state of S =  10 and an 
king-type magnetocrystalline anisotropy. which stabilizes the spin states with 
m = =k 10 and generates an energy barrier for the reversal of the magnetization 
of about 67 K for Mnlz  acetate and 25 K for Fex. 

Thermally activated quantum tunneling of the magnetization has first been 
evidenced in both systems [ 113-1 161. Theoretical discussion of this assumes 
that thermal processes (principally phonons) promote the molecules up to high 
levels with small quantum numbers l i i z l ,  not far below the top of the energy 
barrier, and the molecules then tunnel inelastically to the other side. Thus the 
transition is almost entirely accomplished via thermal transitions, and the char- 
acteristic relaxation time is strongly temperature-dependent. An alternative ex- 
plication was also presented [ 1171. For Fex, however, the relaxation time 
becomes temperature-independent below 0.36 K [ 116, 1181, showing that a pure 
tunneling mechanism between the only populated ground states m = * S = 
=k 10 is responsible for the relaxation of the magnetization. On the other hand, 
in the Mn, acetate system one sees temperature-independent relaxation only for 
strong applied fields and below about 0.6 K [ 119, 1201. During the last years, 
several new molecular magnets were presented (see, for instance, Refs. 
121 - 124) which show also tunneling at low temperatures. 

The following subsections review the most appealing results concerning the 
Fes system which can be seen as an ideal “model molecule” to study quantum 
phenomena in magnetic nanostructures. We stress that the tunneling in large 
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Figure 32. Schematic view of the magnetic core of the Fex cluster. The oxygen atoms are black, 
the nitrogen atoms are gray, and carbon atoms are white. For the sake of clarity. only the hydrogen 
atoms that are exchanged with deuterium are shown as small spheres (Section V.B.4). The arrows 
represent the spin structure of the ground state S= 10 as experimentally determined through polar- 
ized neutron diffraction experiments LlOS]. The exact orientation of easy, medium. and hard axis of 
magnetization (Fig. 33) can be found in Ref. 110. 

spins is remarkable because it does not show up at the lowest orders of 
perturbation theory. 

All measurements on Fe8 were performed using an array of micro-SQUIDS 
(Section II.B.7). The high sensitivity of this magnetometer allows us to study 
single Fe8 crystals [125] of sizes of the order of 10 to 500pm. For ac- 
susceptibility measurements and magnetization measurements at T > 6 K, we 
used a home-built Hall probe magnetometer [26, 1261. It works in the temperature 
range between 0.03 K and loOK, for frequencies between 1 Hz and 100kHz. 
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After discussing the magnetic anisotropy of Fe8, we present the observed 
quantum phenomena. The discussions of the following sections neglect environ- 
mental decoherence effects for the sake of simplicity. In Section V.2, we focus 
on effects of the environment (dipolar coupling, nuclear spins, and temperature) 
onto the tunneling. This review should help to set up a complete theory which 
describes real magnetic quantum systems. 

1. Magnetic Anisotropy in Fe8 

The octanuclear iron(II1) 0x0-hydroxo cluster of formula [Fe802(0H)12 
(tacn),J8+ where tacn is a macrocyclic ligand, short Fe8 (Fig. 32), was first 
synthesized by Wieghardt et al. in 1984 [125]. Four central iron (111) ions with 
S = 512 are bridged by two 0x0 groups. The other four iron (111) ions are bridged 
by hydroxo groups to the central iron ions in an almost planar arrangement, as 
shown in Fig. 32. The clusters have approximate D2 symmetry but crystallize in 
the triclinic system [110]. 

Fe8 has an S = 10 ground state that originates from antiferromagnetic inter- 
actions that do not give complete compensation of the magnetic moment [127]. 
Spin-orbital moments can be neglected because the magnetic ions are in an 
“orbital singlet” as a result of Hund’s rules. The spin structure of the ground 
state schematized by the arrows in Fig. 32 has been recently confirmed by a 
single-crystal polarized neutron investigation that provided a magnetization 
density map of the cluster [109]. 

The simplest model describing the spin system of Fe8 molecular clusters 
(called the giant spin model) has the following Hamiltonian [ 1121: 

S,, S, and S, are the three components of the spin operator, D and E are the 
anisotropy constants which were determined via HF-EPR (D/kB M 0.275 K and 
ElkB M 0.046K [112]), and the last term of the Hamiltonian describes the 
Zeeman energy associated with an applied field 8. This Hamiltonian defines 
hard, medium, and easy axes of magnetization in x, y, and z directions, respec- 
tively (Fig. 33). It has an energy level spectrum with (2s + 1) = 21 values which, 
to a first approximation, can be labeled by the quantum numbers m = - 10, 
-9, .  . . , 10 choosing the z-axis as quantization axis. The energy spectrum, 
shown in Fig. 34, can be obtained by using standard diagonalisation techniques 
of the [21 x 211 matrix describing the spin Hamiltonian S =  10. At fi = 0, the 
levels m = 5 10 have the lowest energy. When a field H, is applied, the energy 
levels with m < -2 increase, while those with m > 2 decrease (Fig. 34). There- 
fore, energy levels of positive and negative quantum numbers cross at certain 
fields H,. It turns out that for Fe8 the levels cross at fields given by poH, zz 
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Figure 33. Unit sphere showing degenerate minima A and B which are joined by two tunnel 
paths (heavy lines). The hard, medium. and easy axes are taken in x-, y - ,  and z-direction, respectively. 
The constant transverse field H,,,,y for tunnel splitting measurements is applied in the xg-plane at an 
azimuth angle cp. At zero applied field fi = 0, the giant spin reversal results from the interference of 
two quantum spin paths of opposite direction in the easy anisotropy yz-plane. For transverse fields in 
direction of the hard axis, the two quantum spin paths are in a plane which is parallel to the yz-plane, 
as indicated in the figure. By using Stokes’ theorem it has been shown [128] that the path integrals 
can be converted in an area integral, yielding-that destructive interference-that is, a quench of the 
tunneling rate-occurs whenever the shaded area is k n/S, where k is an odd integer. The interference 
effects disappear quickly when the transverse field has a component in the y-direction because the 
tunneling is then dominated by only one quantum spin path. 

n x 0.22 T, with n = 1, 2,  3. . . . The inset of Fig. 34 displays the details at a level 
crossing where transverse terms containing S, or S, spin operators turn the 
crossing into an “avoided level crossing.” The spin S is “in resonance” between 
two states when the local longitudinal field is close to an avoided level crossing. 
The energy gap, the so-called “tunnel spitting” A, can be tuned by an applied 
field in the xy-plane (Fig. 33) via the S,H, and S,H, Zeeman terms (Section 
V. A. 3). 

The effect of these avoided level crossings can be seen in hysteresis loop 
measurements (Fig. 35). When the applied field is near an avoided level cross- 
ing, the magnetization relaxes faster, yielding steps separated by plateaus. As the 
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Figure 34. Zeeman diagram of the 21 levels of the S= 10 manifold of Fe8 as a function of the 
field applied along the easy axis [Eq. (5.1)]. From bottom to top, the levels are labeled with quantum 
numbers rn = f 10, * 9 , .  . . , 0. The levels cross at fields given by po H, c n x 0.22 T, with n = 1, 
2, 3,. . . . The inset displays the detail at a level crossing where the transverse terms (terms containing 
S, or/and S, spin operators) turn the crossing into an avoided level crossing. The greater the tunnel 
splitting A, the higher the tunnel rate. 

temperature is lowered, there is a decrease in the transition rate due to reduced 
thermal-assisted tunneling. A similar behavior was observed in Mnlz acetate 
clusters [113-11.51 where equally separated steps were observed at H ,  x 
n x 0.45T. The main difference between both clusters is that the hysteresis 
loops of Fe8 become temperature-independent below 0.36 K whereas measure- 
ments on Mn12 acetate indicate a temperature independence only for strong 
applied fields and below 0.6 K [119-1201. 

Another important difference is that the step heights (i.e., the relaxation rates) 
change periodically when a constant transverse field is applied (Fig. 36). It is the 
purpose of the next subsections to present a detailed study of this behavior. 

2.  Landau-Zener Tunneling in Fe8 

The nonadiabatic transition between the two states in a two-level system has first 
been discussed by Landau, Zener, and Stuckelberg [ 130-1321. The original work 
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Figure 35. Hysteresis loops of a single crystal of Fe8 molecular clusters: (a) at different 
temperatures and a constant sweeping rate dH,ldr = 0.014Tls and (b) at 0.04 K and different field 
sweeping rates. The loops display a series of steps, separated by plateaus. As the temperature is 
lowered, there is a decrease in the transition rate due to reduced thermal assisted tunneling. The 
hysteresis loops become temperature-independent below 0.35 K, demonstrating quantum tunneling 
at the lowest energy levels. The resonance widths at small fields H, of about 0.05 Tare mainly due to 
dipolar fields between the molecular clusters [118, 1291. 

by Zener concentrates on the electronic states of a biatomic molecule, while 
Landau and Stuckelberg considered two atoms that undergo a scattering process. 
Their solution of the time-dependent Schrodinger equation of a two-level system 
could be applied to many physical systems and it became an important tool for 
studying tunneling transitions. The Landau-Zener model has also been applied 
to spin tunneling in nanoparticles and clusprs [ 133-1 381. The tunneling prob- 
ability P when sweeping the longitudinal field H, at a constant rate over an 
avoided energy level crossing (Fig. 37) is given by 

Here, m and m' are the quantum numbers of the avoided level crossing, dH, ldt is 
the constant field sweeping rates, g x 2, pB the Bohr magneton, and f i  is Planck's 
constant. 
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Figure 36. Hysteresis loops measured along Hr in the presence of a constant transverse field at 
0.04 K. Insers: Enlargement around the field H ;  = 0. Notice that the sweeping rate is ten times slower 
for the measurements in the insets than that of the main figures. 
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Figure 36. (Continued). 

Magnetic field H, 

Figure 37. Detail of the energy level diagram near an avoided level crosssing. rn and rn’ are the 
quantum numbers of the energy level. P,, ,n’ is the Landau-Zener tunnel probability when sweeping 
the applied field from the left to the right over the anticrossing. The greater the gap A and the slower 
the sweeping rate, the higher is the tunnel rate [Eq. ( 5 . 2 ) ] .  
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With the Landau-Zener model in  mind. we can now start to understand 
qualitatively the hysteresis loops (Fig. 35). Let us start at a large negative 
magnetic field H7. At very low temperature. all molecules are in the rn = - 10 
ground state. When the applied field H: is ramped down to zero, all molecules 
will stay in the m = -10 ground state. When ramping the field over the A-io,lo- 
region at H z x O 0 ,  there is a Landau-Zener tunnel probability P-lo,lo to tunnel 
from the rn = - 10 to the m = 10 state. P-lo,lo depends on the sweeping rate [Eq. 
(5 .2) ] ;  that is, the slower the sweeping rate, the larger the value of P-lo.lo. This 
is clearly demonstrated in the hysteresis loop measurements showing larger steps 
for slower sweeping rates (Fig. 35). When the field H, is now further increased, 
there is a remaining fraction of molecules in the nz = - 10 state which became a 
metastable state. The next chance to escape from this state is when the field 
reaches the A-,o,9 region. There is a Landau-Zener tunnel probability P-lo.9 to 
tunnel from the rn = - 10 to the rn = 9 state. As rn = 9 is an excited state, the 
molecules in this state desexcite quickly to the nz = 10 state by emitting a 
phonon. An analogous procedure happens when the applied field reaches the 
A-,o,io-n-regions (n  = 2, 3, . . .) until all molecules are in the m = 10 ground 
state; that is, the magnetization of all molecules is reversed. As phonon emission 
can only change the molecule state by Atn = 1 or 2, there is a phonon cascade for 
higher applied fields." 

In order to apply quantitatively the Landau-Zener formula [Eq. (5 .2) ] ,  we 
first saturated the crystal of Fe8 clusters in a field of H; = - 1.4 T, yielding an 
initial magnetization M,,, = -M,.' Then, we swept the applied field at a constant 
rate over one of the resonance transitions and measured the fraction of molecules 
which reversed their spin. This procedure yields the tunneling rate P - I O J O - , ~  and 
thus the tunnel splitting A - l ~ . l ~ - , s  [Eq. ( 5 . 2 ) ]  with n =0, 1, 2 , .  . . . 

we did multiple sweeps over 
the resonance transition. The magnetization M after N sweeps is given by 

For very small tunneling probabilities P _ l o  

Here MI, is the initial magnetization, M,,(H;) is the equilibrium magnetization, 
N = (l/A)(dH, ldt)t is the number of sweeps over the level crossing, 
r = kP- lo,,o-,z (l/A)(dH,/dt) is the overall Landau-Zener transition rate. k = 2 
for n = 0 and k = 1 for n = 1 ,2 ,  . . , , and A is the amplitude of the ramp-field.$ We 
have therefore a simple tool to obtain the tunnel splitting by measuring P- l ~ . l ~ - , l ,  

"Phonon-induced transitions with IAuil>2 are very small [139-141]. 

order to avoid heating problems for measurements of A for r 7 >  1.  w'e started in a thermally annealed 
sample with M , ,  = 0.95 M ,  instead of M,, = - M ,  or M,n = 0. 
'We supposed here that the forth and back w e e p s  give the same tunnel probability. This is a good 
approximation for P<< 1 where next-nearest-nei@hbor (molecule) effects can be neglected. 
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or M ( N )  for Pplo,Iop,l<<l. We first checked the predicted Landau-Zener sweep- 
ing field dependence of the tunneling rate. This can be done, for example, by 
plotting the relaxation of magnetization as a function of t = N (AldHZldt). The 
Landau-Zener model predicts that all measurements should fall on one curve 
which was indeed the case for sweeping rates between 1 and 0.001 Tls (Fig. 38) 
for the m = * 10 transition. The deviations at lower sweeping rates are mainly 
due to the hole-digging mechanism [129] which slows down the relaxation (see 
Section V.B.2)" In the ideal case, we should find an exponential curve [Eq. (5.3)]. 
However, we found clear deviations from the exponential curve (Fig. 39), which 
might be due to molecules with different amounts of nuclear spins. For example, 
two percent of natural iron has a nuclear spin; that is, about 10 percent of Fe8 has 
at least one nuclear spin on the iron. This interpretation is supported by measure- 
ments on isotopically substituted Fe8 samples (Fig. 39). 

Another way of checking the Landau-Zener sweeping field dependence of 
the tunneling rate is presented in Fig. 40 showing a sweeping rate independent 

1 

MIM, 

0.1 
0 1000 2000 3000 4000 

t (s) 

Figure 38. Scaling plot for the Landau-Zener method showing the predicted field sweeping 
rate dependence for 1 T/s to 1 mT/s. Each point indicates the magnetization after a field sweep over 
the m = i 10 resonance. The dotted lines are guides for the eyes. For comparison, the figure displays 
also a relaxation curve at a constant field i? = 0 (Fig. 36) which shows much slower relaxation [129]. 

*Roughly speaking, at very low field sweeping rates internal fields change faster than the external 
field. 
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Figure 39. Scaling plot for the Landau-Zener method showing the predicted field sweeping 
rate dependence for 1 Tis to 1 mT/s similar to Fig. 38 but for three isotopically substituted Fe8 
samples. Further details are presented in Section V.B.4. 

A- ,o , , o  between 1 and 0.001 T/s." The measurements on isotopically substituted 
Fes samples show a small dependence of Af11.f71 on the hyperfine coupling 
(Fig. 40). Such an effect has been predicted for a constant applied field by 
Tupitsyn et al. [142], and for a ramped field by Rose [136]. Further details 
are presented in Section V.B.4. 

We also compared the tunneling rates found by the Landau-Zener method with 
those found using a square-root decay method that was proposed by Prokof'ev and 
Stamp [143], and we found a good agreement [129, 1441 (Section V. B.l) .  

Our measurements showed for the first time that the Landau-Zener method is 
particularly adapted for molecular clusters because it works even in the presence 
of dipolar fields that spread the re5onance transition provided that the field 
sweeping rate is not too small. Furthermore, our measurements show a small 
but clear influence of the hyperfine coupling which should be included in a 
generalized Landau-Zener model [ 1361. 

3. Oscillations of Turzrzel Splitting 

An applied field in the xy-plane can tune the tunnel splittings A,, ,,,) via the S, and 
S, spin operators of the Zeeman terms that do not commute with the spin 

*Recent measurements confirmed the good agreement up to 30T/s. 
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Figure 40. Field sweeping rate dependence of the tunnel splitting A-lo .10  measured by a 
Landau-Zener method for three Fe8 samples, for H, = 0. The Landau-Zener method works in the 
region of high sweeping rates where A-lo,lo is sweeping rate independent. Note that the differences 
of A- ,o , lo  between the three isotopically substituted samples are rather small in comparison to the 
oscillations in Fig. 41. 

Hamiltonian. This effect can be demonstrated by using the Landau-Zener method 
(Section V.A.2). Figure 41 presents a detailed study of the tunnel splitting A + at 
the tunnel transition between m = 5 10, as a function of transverse fields applied 
at different angles cp, defined as the azimuth angle between the anisotropy hard 
axis and the transverse field (Fig. 42). For small angles cp the tunneling rate 
oscillates with a period of 0.4 T, whereas no oscillations showed up for large 
angles cp [47]. In the latter case, a much stronger increase of A 10 with transverse 
field is observed. The transverse field dependence of the tunneling rate for differ- 
ent resonance conditions between the state m = - 10 and (1 0-n) can be observed 
by sweeping the longitudinal field around poH, = n x 0.22 T with n = 0, 1,2,  . . . . 
The corresponding tunnel splitting A- 10, lO-n  oscillate with almost the same 
period of N 0.4 T (Fig. 41). In addition, comparing quantum transitions between 
m = - 10 and (10-n), with n even or odd, revealed a parity (or symmetry) effect 
that is analogous to the Kramers' suppression of tunneling predicted for half- 
integer spins [ 145, 1461. This behavior has been observed for n = 0 to 4.* A similar 
strong dependence on the azimuth angle cp was observed for all the resonances. 

*The tunneling rate wJere too fast for n>4 
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Figure 41. Measured tunnel splitting A as a function of transverse field for (a) several azimuth 
angles cp at m = i 10 and (b) cp zz O”, as well as for quantum transition between m = - 10 and 
(10-n). Note the parity effect that is analogous to the suppression of tunneling predicted for half- 
integer spins. It should also be mentioned that internal dipolar and hyperfine fields hinder a quench of 
A which is predicted for an isolated spin (Figs. 42 and 45). 
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a. Semiclassical Descriptions. Before showing that the above results can be 
derived by an exact numerical calculation using the quantum operator formal- 
ism, it is useful to discuss semiclassical models. The original prediction of 
oscillation of the tunnel splitting was done by using the path integral formalism 
[ 1471. Here [ 1281, the oscillations are explained by constructive or destructive 
interference of quantum spin phases (Berry phases) of two tunnel paths (instan- 
ton trajectories) (Fig. 33). Since our experiments were reported, the Wentzel- 
Kramers-Brillouin theory has been used independently by Garg [ 1481 and 
Villain and Fort [149]. The surprise is that although these models [128, 148, 
1491 are derived semiclassically, and should have higher-order corrections in 
1/S, they appear to be exact as written! This has first been noted in Refs. 148 and 
149 and then proven in Ref. 150. Some extensions or alternative explications of 
Garg’s result can be found in Refs. 151-154. 
The period of oscillation is given by [128] 

where D and E are defined in Eq. (5.1). We find a period of oscillation of 
AH = 0.26 T for D = 0.275 K and E = 0.046 K as in Ref. 112. This is somewhat 
smaller than the experimental value of N 0.4T. We believe that this is due to 
higher-order terms of the spin Hamiltonian which are neglected in Garg’s cal- 
culation. These terms can easily be included in the operator formalism as shown 
in the next subsection. 

b. Exact Numerical Diagonalization. In order to quantitatively reproduce 
the observed periodicity we included fourth-order terms in the spin Hamiltonian 
[Eq. (5.1)] as recently employed in the simulation of inelastic neutron 
scattering measurements [ 155, 1561 and performed a diagonalization of the 
[21 x 211 matrix describing the S = 10 system. For the calculation of the tunnel 
splitting we used D = 0.289 K, E = 0.055 K [Eq. (5.1)] and the fourth-order 
terms as defined in [155] with B! = 0.72 x K, Bi = 1.01 x lop5 K, 
B: = -0.43 x K, which are close to the values obtained by EPR measure- 
ments [ 1101 and neutron scattering measurements [ 1561. The calculated tunnel 
splittings for the states involved in the tunneling process at the resonances n = 0, 
1, and 2 are reported in Figure 42, showing the oscillations as well as the parity 
effect for odd resonances. The calculated tunneling splitting is, however, N 1.5 
times smaller than the observed one. This small discrepancy could be reduced by 
introducing higher-order terms. We believe that this is not relevant because the 
above model neglects, for example, the influence of nuclear spins which seems 
to increase the measured (effective) tunnel splittings (Fig. 40 and Section V.B .4). 
Our choice of the fourth-order terms suppresses the oscillations of large 



1000 

100 

10 

1 

0.1 

0.01 

1000 

100 

10 

1 

0.1 

0.01 

M’. WERNSDORFER 

0 0.4 0.8 1.2 1.6 2 

Magnetic transverse field (T) 

0 0.4 0.8 1.2 1.6 2 

Magnetic transverse field (T) 

Figure 42. Calculated tunnel splitting A as a function of transverse field for (a) quantum 
transition between m =  =i 10 at several azimuth angles cp and (b) quantum transition between 
ni = -10 and (10-n) at cp = 0 (Section V.A.3.b). The fourth-order terms suppress the oscillations 
of A for large transverse fields lH,l. 
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transverse fields (Fig. 42). This region could not be studied in the current setup. 
Future measurements should focus on the higher-field region in order to find a 
better effective Hamiltonian. 

B. Environmental Decoherence Effects in Molecular Clusters 

At temperatures below 0.36 K, Fex molecular clusters display a clear crossover 
from thermally activated relaxation to a temperature-independent quantum 
regime, with a pronounced resonance structure of the relaxation time as a func- 
tion of the external field (Section V.A.l). It was surprising, however, that the 
observed relaxation of the magnetization in the quantum regime was found to be 
nonexponential and the resonance width orders of magnitude too large 
[ 1 16, 1181. The key to understand this seemingly anomalous behavior involves 
the hyperfine fields as well as the evolving distribution of the weak dipole fields 
of the nanomagnets themselves [143]. Both effects were shown to be the main 
source of decoherence at very low temperature. At higher temperatures, phonons 
are another source of decoherence. 

In the following sections, we focus on the low temperature and low field 
limits, where phonon-mediated relaxation is astronomically long and can be 
neglected. In this limit, the m = f S spin states are coupled due to the tunneling 
splitting A * 5 which is about lO-’K for Fe8 (Section V.A.3) and lo-” K for 
Mnlz  [157] with S = 10. In order to tunnel between these states, the longitudinal 
magnetic energy bias 5 = gy&Wl,,,I due to the local magnetic field Hlocal on a 
molecule must be smaller than A + s, implying a local field smaller than lo-’ T 
for Fex clusters. Since the typical intermolecular dipole fields are of the order of 
0.05 T, it seems at first that almost all molecules should be blocked from tunnel- 
ing by a very large energy bias. Prokof’ev and Stamp have proposed a solution 
to this dilemma by proposing that fast dynamic nuclear fluctuations broaden the 
resonance, and the gradual aqjustment of the dipole fields in the sample caused 
by the tunneling brings other molecules into resonance and allows continuous 
relaxation [ 1431. Some interesting predictions are briefly reviewed in the follow- 
ing section. 

1. Prokof ’ev-Stamp Theory 

Prokof’ev and Stamp were the first who realized that there are localized couplings 
of environmental modes with mesoscopic systems which cannot be modeled with 
an “oscillator bath” model [ 1581 describing delocalized environmental modes 
such as electrons, phonons, photons, and so on. They found that these localized 
modes such as nuclear and paramagnetic spins are often strong and described them 
with a spin bath model [159]. We do not review this theory* but focus on one 

*For a review. see Ref. 160 
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particular application which is interesting for molecular clusters [ 1431. Prokof’ev 
and Stamp showed that at a given longitudinal applied field H,, the magnetization 
of a crystal of molecular clusters should relax at short times with a square-root 
time dependence which is due to a gradual modification of the dipole fields in the 
sample caused by the tunneling: 

Here M,, is the initial magnetization at time t = 0 (after a rapid field change), and 
Meq(HZ) is the equilibrium magnetization at H,. The rate function rsqrt(HZ) is 
proportional to the normalized distribution P(H,) of molecules which are in 
resonance at H,: 

where 50  is the line width coming from the nuclear spins, ED is the Gaussian 
half-width of P(H,), and c is a constant of the order of unity which depends on 
the sample shape. If these simple relations are exact, then measurements of the 
short time relaxation as a function of the applied field H, give directly the 
distribution P ( H J ,  and they allows one to measure the tunnel splitting A + 

which is described in the next section. 

2.  Hole Digging Method to Study Dipolar Distributions 
and Hyper-jine Couplings 

Motivated by the Prokof’ev-Stamp theory [143], we developed a new techni- 
que-which we call the hole digging method-that can be used to observe the 
time evolution of molecular states in crystals of molecular clusters. It allowed us 
to measure the statistical distribution of magnetic bias fields in the Fe8 system 
that arise from the weak dipole fields of the clusters themselves. A hole can be 
“dug” into the distribution by depleting the available spins at a given applied 
field. Our method is based on the simple idea that after a rapid field change, the 
resulting short time relaxation of the magnetization is directly related to the 
number of molecules which are in resonance at the given applied field. 
Prokof’ev and Stamp have suggested that the short time relaxation should follow 
a 4-relaxation law [Eq. ( 5 . 5 ) ] .  However, the hole digging method should work 
with any short time relaxation law-for example, a power law: 

M(Hz% t )  = Mm + (Meq(Hz) - Min)(rshon(Hz)t)’ (5.7) 

where rshon is a characteristic short time relaxation rate that is directly related to 
the number of molecules which are in resonance at the applied field H,, and 
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O<a<l in most cases. r=OS in the Prokof’ev-Stamp theory [Eq. (5.5)] and 
rsqrt is directly proportional to P(H,) [Eq. (4.6)l. The hole digging method can 
be divided into three steps (Fig. 43): 

1. Preparing the Initial State. A well-defined initial magnetization state of 
the crystal of molecular clusters can be achieved by rapidly cooling the 
sample from high down to low temperatures in a constant applied field g. 
For zero applied field (H,  = 0) or rather large applied fields (H,> 1 T), one 
yields the demagnetized or saturated magnetization state of the entire 
crystal, respectively. One can also quench the sample in a small field of 
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Figure 43. Schema of the hole digging method presenting the time dependence of temperature, 
applied field, and magnetization of the sample. 
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few milliteslas yielding any possible initial magnetization Mi,. When the 
quench is fast (<1  s). the sample’s magnetization does not have time to 
relax, either by thermal or by quantum transitions. This procedure yields a 
frozen thermal equilibrium distribution, whereas for slow cooling rates the 
molecule spin states in the crystal might tend to certain dipolar ordered 
ground state. 

2. Modifying the Initial State-Hole Digging. After preparing the initial 
state, a field Hdig is applied during a time tdig, called “digging field and 
digging time,” respectively. During the digging time and depending on 
Hdig, a fraction of the molecular spins tunnel (back and/or forth); that is, 
they reverse the direction of magnetization.” 

3. Probing the Final State. Finally, a field Hprobe is applied (Fig. 43) to 
measure the short time relaxation from which one yields r s h o r t  [Eq. 
(5.7)] which is related to the number of spins that are still free for tunnel- 
ing after step 2. 

The entire procedure is then repeated many times but at other fields HYbe 
yielding rshort(Hz,  Hdig, tdig) which is related to the distribution of spins 
P(H;, ITdig, tdig) which are still free for tunneling after the hole digging. For 
tdlg = 0, this method maps out the initial distribution. 

3. Interrnoleciilar Dipole Interaction in FeH 

We applied the hole digging method to several samples of molecular clusters and 
quantum spin glasses. The most detailed study has been done on the Fex system. 
We found the predicted 4 relaxation [Eq. ( S . S ) ]  in experiments on fully satu- 
rated Fe8 crystals [118, 1611 and on nonsaturated samples [ 1291. Figure 44 dis- 
plays a detailed study of the dipolar distributions revealing a remarkable 
structure that is due to next-nearest-neighbor effects [ 1291.’ These results are 
in good agreement with simulations [ 162, 1631. 

For a saturated initial state, the Prokof’ev-Stamp theory allows one to esti- 
mate the tunnel splitting A s. Using Eqs. (3), (9), and (12) of Ref. 143, along 
with integration, we find J rcqrtdk = C ( C ~ / E D ) ( A * ~  ,/4fi), where c is a constant 
of the order of unity which depends on the sample shape. With ED = 15 mT, 
~ O = O . S m T ,  c =  1, and rcqrt [129, 1441, we find A i  1.2 x lO-’K which is 

*The field sweeping rate to apply Hd,g should be fast enough to minimize the change of the initial state 
during the field sweep. 

‘The peak at 0 .04T as well as the shoulder at 0.02T and 0.04T are originated by the cluster5 which 
have one nearest-neighbor cluster with reversed magnetization: The peak at 0.04 T corresponds to the 
reversal of the neighboring cluster along the a crystallographic axis. which almost coincides with the 
easy axis of magnetization, while the shoulder at 0.02 T and 0.04 Tare  due to the clusters along b and 
C. 
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Figure 44. Field dependence of the short time square-root relaxation rates rqqrt(H2) for three 
different values of the initial magnetization M,". According to Eq. (5.6),  the curves are proportional 
to the distribution P ( H J  of magnetic energy bias due to local dipole field distributions in the sample. 
Note the logarithmic scale for rlqrt. The peaked distribution labeled Mi, = -0.998 M, was obtained 
by saturating the sample, whereas the other distributions were obtained by thermal annealing. 
M , ,  = -0.870M, is distorted by nearest-neighbor lattice effects. 

close to the result of A K obtained by using a Landau-Zener 
method (Section V.A.2) [47]. Whereas the hole digging method probes the 
longitudinal dipolar distribution (H,  direction), the Landau-Zener method can 
be used to probe the transverse dipolar distribution by measuring the tunnel 
splittings A around a topological quench. Figure 45 displays such a study for 
the quantum transition between rn = * 10, and m = - 10 and 9. Particular efforts 
were made to align well the transverse field in direction of the hard axis. The 
initial magnetizations 0 5 M,, I M, were prepared by rapidly quenching the 
sample from 2 K  in the present of a longitudinal applied field H,. The quench 
takes approximately one second and thus the sample does not have time to relax, 
either by thermal activation or by quantum transitions, so that the high- 
temperature "thermal equilibrium" spin distribution is effectively frozen in. 
For H ,  > 1 T, one gets an almost saturated magnetization state. 

The measurements of A(M,") show a strong dependence of the minimal 
tunnel splittings on the initial magnetization (Fig. 45). They demonstrate 
that the transverse dipolar interaction between Fes molecular clusters is 
largest of M,,=O - that is, similar to the longitudinal dipolar interaction 
(Fig. 44). 

= 1.0 x 
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Figure 45. Detailed measurement of the tunnel splitting A around a topological quench for the 
quantum transition between m = - 10 and (10-n) at cp = 0'. Note the strong dependence on the initial 
magnetization M,,  which demonstrates the transverse dipolar interaction between Fe, molecular 
clusters [ 1291. 

4. Hyperjine Interaction in Fe8 and Mnlz  

The strong influence of nuclear spins on resonant quantum tunneling in the 
molecular cluster Fe8 was demonstrated for the first time [144] by comparing 
the relaxation rate of the standard Fe8 sample with two isotopic modified sam- 
ples: (i) 56Fe is replaced by 57Fe, and (ii) a fraction of 'H is replaced by 2H. By 
using the hole digging method, we measured an intrinsic broadening which is 
driven by the hyperfine fields. Our measurements are in good agreement with 
numerical hyperfine calculations [136, 1441. For T > 1.5 K, the influence of 
nuclear spins on the relaxation rate is less important, suggesting that spin- 
phonon coupling dominates the relaxation rate. 

Concerning Mn12 we did not find that the relaxation follows the &-relaxation 
law at low temperatures [ 164). It is well known that the situation in this sample 
is more complicated due to the fact that there are several coexisting species of 
Mn12 in any crystal, each with different relaxation times. In Ref. 164 we were 
able to isolate one faster relaxing species. The relaxation could be approximately 
fit to the &-relaxation law, but in fact is better fit to a power law t" with 
0.3<s(<0.5 (depending on the applied field). We applied the hole digging 
method to this species, and we found evidence for intrinsic line broadening 
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below 0.3 K which we suggest comes from nuclear spins in analogy with Fes. 
We also measured the relaxation of Mnl2 at higher temperature (0.04-5 K) and 
small fields (< 0.1 T), and we found no evidence for a short time relaxation. 

5. Temperature Dependence of the Landau-Zener Tunneling Probability 

In this section we present studies of the temperature dependence of the Landau- 
Zener tunneling probability P yielding a deeper insight into the spin dynamics of 
the Fe8 cluster. By comparing the three isotopic samples (Section V.B.4.) we 
demonstrate the influence of nuclear spins on the tunneling mechanism and in 
particular on the lifetime of the first excited states. Our measurements show the 
need of a generalized Landau-Zener transition rate theory taking into account 
environmental effects such as hyperfine and spin-phonon coupling." 

All measurement so far were done in the pure quantum regime (T < 0.36 K) 
where transition via excited spin levels can be neglected. We discuss now the 
temperature region of small thermal activation ( T <  1 K) where we should con- 
sider transition via excited spin levels as well [138, 1401. 

In order to measure the temperature dependence of the tunneling probability, 
we used the Landau-Zener method as described in Section V.A.2 with a phe- 
nomenological modification of the tunneling probability P (for a negative satu- 
rated magnetization): 

p = n-lOP-lO,lO + Prh 

where P-lo,lo is given by (Eq. 5.2), nPlo is the Boltzmann population of the 
m = - 10 spin level, and Pth is the overall tunneling probability via excited spin 
levels. nPlo  = 1 for the considered temperature T < 1 K and a negative saturated 
magnetization of the sample. 

Figure 46 displays the measured tunneling probability P for "Feg as a func- 
tion of a transverse field Hx and for several temperatures. The oscillation of P are 
seen for all temperatures, but the periods of oscillations decrease for increasing 
temperature (Fig. 47). This behavior can be explained by the giant spin model 
[Eq. (5 .  l)] with fourth-order transverse terms (Section V.A.3.b). Indeed, the 
tunnel splittings of excited spin levels oscillate as a function of H ,  with decreas- 
ing periods (Fig. 48). 

Figure 49 presents the tunneling probability via excited spin levels Prh = P- 
n- lop- Surprisingly, the periods of Prh  are temperature-independent in the 

(5.8) 

*Spin-phonon interactions mainly originate from the perturbation of the crystal field by lattice 
vibration, which produce both a fluctuating local strain and a fluctuating local rotation [140,141,165]. 
It is sufficient to retain the lowest-order terms which are quadratic with respect to spin operators. The 
resulting spin-phonon Hamiltonian contains (i) terms that commute with S; and do not contribute to 
the relaxation, (ii) terms proportional to S,S_ and S&, and (iii) terms proportional to S: and Sz.  
Thus, the spin-phonon interaction has matrix elements between states with quantum numbers nz and 
m' if !m--1)2'1 = 1 or 2 [140]. 
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Figure 46. Transverse field dependence of the tunneling probability P at several temperatures. 
and the ground-state tunneling probability P- lo , , o  measured at T=0.05K and for "Fe8. The field 
sweeping rate was 0.14Tis. The dotted lines indicate the minima of P-lo,lo. 

region T < 0.7 K. This suggests that only transitions via excited levels rn = i 9 
are important in this temperature regime. This statement is confirmed by the 
following estimation [ 1661. 

Using Eq. (5 .2) ,  typical field sweeping rates of 0.1 T/s, and tunnel splittings 
from Fig. 48, one easily finds that the Landau-Zener tunneling probability of 
excited levels are P-,,,,, z 1 for m < 10 and H z 0. This means that the 
relaxation rates via excited levels are mainly governed by the lifetime of 
the excited levels and the time T ~ ~ ~ , ~ ~  during which these levels are in resonance. 
The latter can be estimated by 

4 

The probability for a spin to pass into the excited level m can be estimated by 
~ ; ~ e - ~ l O ~ ~ ~ l ~ ~ ~ ,  where Elo,m is the energy gap between the levels 10 and m, and T~~ 

is the lifetime of the excited level m. One gets 
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in Fig. 46. a, b, and c are defined in the inset. The dotted line labeled with a’, b’. and c’ were taken 
from Plh of Fig. 49; see also Ref. 126. 

Note that this estimation neglects higher excited levels with lml<8.* Figure 50 
displays the measured P t h  for the three isotopic Fe8 samples. For 0.4 K<T< 1 K 
we fitted Eq. (5.10) to the data, leaving only the level lifetimes r9 and ~g as 
adjustable parameters. All other parameters are calculated using the parameters 
in Section V.A.3.b. We obtain z9= 1.0, 0.5, and 0.3 x 10p6s, and r8=0.7, 0.5, 
and 0.4 x lop7 s for DFeg, SfFes, and 57Fes, respectively. These results indicate 
that only the first excited level has to be considered for 0.4 K<T<0.7 K. Indeed, 
the second term of the summation in Eq. (5.10) is negligible in this temperature 
interval. It is interesting to note that this finding is in contrast to hysteresis loop 
measurements on Mn12 [120,167] which were interpreted to have an abrupt 
transition between thermal assisted and pure quantum tunneling [ 1681. Further- 
more, our result shows clearly the influence of nuclear spins which seem to 
decrease the level lifetimes r,-that is, to increase dissipative effects. 

The nuclear magnetic moment and not the mass of the nuclei seems to have 
the major effect on the dynamics of the magnetization. In fact the mass is 
increased in both isotopically modified samples whereas the effect on the 
relaxation rate is opposite. On the other hand, ac-susceptibility measurements 

*The probability of phonon induced transitions with lAnzl>2 are very small [138-1401. Also the 
Boltzmann factor e-E1oJ,r k B r  is very small for m<8 and T<1 K. 
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Figure 48. Calculated tunnel splitting A,,,,,, as a function of the transverse field H, for quantum 
transition between rn = i 10, * 9 and * 8 (Section V.A.3.b). 
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Figure 49. Transverse field dependence of P,,, which is the difference between the measured 
tunnel probability P and the ground-state tunnel probability n-loP-lo,lo measured at T=O.O5 K (see 
Fig. 46). The field sweeping rate was 0.14Tis. The dotted lines indicate the minima of Plh, whereas 
the dashed lines indicate the minima of P-lo,lo (see Fig. 47). 
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Figure 50. Temperature dependencies of Pih for HA = 0 for three Fe8 samples. The field 
sweeping rate was 0.14T/s. The dotted lines are fits of the data using Eq. (5.10). 

at T >  1.5 K showed no clear difference between the three samples; this sug- 
gested that above this temperature, where the relaxation is predominately due to 
spin-phonon coupling [140, 1411, the role of the nuclear spins is less important. 
Although the increased mass of the isotopes changes the spin-phonon coupling, 
this effect seems to be small. 

We can also exclude that the change of mass for the three isotopic samples 
has induced a significant change in the magnetic anisotropy of the clusters. In 
fact the measurements below T<0.35 K, where spin-phonon coupling is negli- 
gible, have shown that (i) relative positions of the resonances as a function of the 
longitudinal field Hz are unchanged," and (ii) all three samples have the same 
period of oscillation of A as a function of the transverse field H, [47], a period 
which is very sensitive to any change of the anisotropy constants. 

6. Conclusion on Molecular Magnets 

In conclusion, we presented detailed measurements which demonstrated that 
molecular magnets offer a unique opportunity to explore the quantum dynamics 

"We observed a small shift of the resonances of the order of magnitude of 1 mT, positive for "Fe8 and 
negative for DFe8 (Mlnit = -MJ. This can also be attributed to the modified hyperfine fields. However, 
a quantitative measurement is complicated by the fact that i t  is impossible to have two crystals with 
exactly the same shape-that is. the same internal fields. 
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of a large but finite spin.* We focused our discussion on the Fex molecular 
magnet because it is the first system where studies in the pure quantum regime 
were possible. The tunneling in this system is remarkable because it does not 
show up at the lowest order of perturbation theory. 

What remains still debated is the possibility of observing quantum coherence 
between states of opposite magnetization. Dipole-dipole and hyperfine interac- 
tions are sources of decoherence. In other words, when a spin has tunneled 
through the barrier, it experiences a huge modification of its environment 
(hyperfine and dipolar) which prohibits the back tunneling. Prokof’ev and Stamp 
suggested three possible strategies to suppress the decoherence [ 1721. (i) Choose 
a system where the NMR frequencies far exceed the tunnel frequencies making 
any coupling impossible. (ii) Isotopically purify the sample to remove all nuclear 
spins. (iii) Apply a transverse field to increase the tunnel rate to frequencies 
much larger than hyperfine field fluctuations. All three strategies are difficult to 
realize. However, some authors tried to realize the last one by performing EPR 
experiments in the presence of a large transverse field [173]. Absorption of 
radio-frequency electromagnetic fields were observed which might be due to 
induced transitions near the tunnel splitting. However, no experiments showed 
the oscillatory behavior in the time domain which might be evidenced by a spin- 
echo type of experiment. 

Concerning the perspectives of the field of single molecule magnets, we expect 
that chemistry is going to play a major role through the synthesis of novel larger 
spin clusters with strong anisotropy. We want to stress that there are already many 
other molecular magnets (see, for instance, Refs. 121-124) which are possible 
model systems. We believe that more sophisticated theories are needed which 
describe the dephasing effects of the environment onto the quantum system. 
These investigations are important for studying the quantum character of mole- 
cular clusters for applications like “quantum computers.” The first implementa- 
tion of Grover’s algorithm with molecular magnets has been proposed [174]. 

C. Quantum Tunneling of Magnetization in Individual 
Single-Domain Nanoparticles 

The following sections focuses on magnetic quantum tunneling (MQT) studied 
in individual nanoparticles or nanowires where the complications due to distri- 
butions of particle size, shape, and so on, are avoided. The experimental 

*Molecules with small spin have also been studied. For example, time-resolved magnetization 
measurements were performed on a spin 1/2 molecular complex, so-called V I 5  [169]. Despite the 
absence of a barrier, magnetic hysteresis is observed over a time scale of several seconds. A detailed 
analysis in terms of a dissipative two-level model has been given, in which fluctuations and splittings 
are of the same energy. Spin-phonon coupling leads to long relaxation times and to a particular 
“butterfly” hysteresis loop [170, 1711. 
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evidence for MQT in a single-domain particle or in assemblies of particles is still 
a controversial subject. We shall therefore concentrate on the necessary experi- 
mental conditions for MQT and review some experimental results which suggest 
that quantum effects might even be important in nanoparticles with S =  lo5 or 
larger. We start by reviewing some important predictions concerning MQT in a 
single-domain particle. 

1. Magnetic Quantum Tunneling in Nunoparticles 

On the theoretical side, it has been shown that in small magnetic particles, a 
large number of spins coupled by strong exchange interaction can tunnel through 
the energy barrier created by magnetic anisotropy. It has been proposed that 
there is a characteristic crossover temperature T, below which the escape of the 
magnetization from a metastable state is dominated by quantum barrier transi- 
tions, rather than by thermal over barrier activation. Above T, the escape rate is 
given by thermal over barrier activation (Section IV). 

In order to compare experiment with theory, predictions of the crossover 
temperature T, and the escape rate rQT in the quantum regime are relevant. 
Both variables should be expressed as a function of parameters that can be 
changed experimentally. Typical parameters are the number of spins S, effective 
anisotropy constants, applied field strength and direction, coupling to the envir- 
onment (dissipation), and so on. Many theoretical papers have been published 
during the last few years [ 1081. We discuss here a result specially adapted for 
single-particle measurements, which concerns the field dependence of the cross- 
over temperature T,. 

The crossover temperature T, can be defined as the temperature where the 
quantum switching rate equals the thermal one. The case of a magnetic particle, 
as a function of the applied field direction, has been considered by several 
authors [175-1771. We have chosen the result for a particle with biaxial aniso- 
tropy as the effective anisotropy of most particles can be approximately 
described by strong uniaxial and weak transverse anisotropy. The result due to 
Kim can be written in the following form [177]: 

where poHl, = K,l/Ms and p0H1 = K,/M, are the parallel and transverse aniso- 
tropy fields given in Tesla, Kll and K1 are the parallel and transverse anisotropy 
constants of the biaxial anisotropy, 8 is the angle between the easy axis of 
magnetization and the direction of the applied field, and E = (1 - H/H:,,). 
Equation (5.1 1) is valid for any ratio a = HL/Hl . The proportionality coefficient 
of (5.11) is of the order of unity (T, is in units of Kelvin) and depends on the 
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approach used for calculation [177]. Equation (5.1 1)  is plotted in Fig. 51 for 
several values of the ratio a. It is valid in the range 4 < 0 < n/2  - 4. 

The most interesting feature which may be drawn from (5.11) is that the 
crossover temperature is tunable using the external field strength and direction 
(Fig. 5 1) because the tunneling probability is increased by the transverse com- 
ponent of the applied field. Although at high transverse fields, T, decreases again 
due to a broadening of the anisotropy barrier. Therefore, quantum tunneling 
experiments should always include studies of angular dependencies. When the 
effective magnetic anisotropy of the particle is known, MQT theories give clear 
predictions with no fitting parameters. MQT could also be studied as a function 
of the effective magnetic anisotropy. In practice, it is well known for single- 
particle measurements that each particle is somewhat different. Therefore, the 
effective magnetic anisotropy has to be determined for each particle (Section 
1II.A. 1). 

Finally, it is important to note that most of the MQT theories neglect 
damping mechanisms. In Section 1V.A [90] we discussed the case of ohmic 
damping, which is the simplest form of damping. More complicated damping 
mechanisms might play an important role. We expect more theoretical work 
on this in future. 
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Figure 51. 
ratio n = H,IH . 

Normalized crossover temperature T, as given by (5.11) and for several values of the 
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2.  Magnetization Reversal in Nanoparticles and Wires 
at Very Low Temperatures 

In order to avoid the complications due to distributions of particle size, shape, 
and so on, some groups have tried to study the temperature and field dependence 
of magnetization reversal of individual magnetic particles or wires. Most of the 
recent studies were done using magnetic force microscopy at room temperature. 
Low-temperature investigations were mainly performed via resistance measure- 
ments (Section 1I.A). 

The first magnetization measurements of individual single-domain nanopar- 
ticles at low temperature (0.1 K<T<6 K) were presented by Wernsdorfer et al. 
[22]. The detector (a Nb microbridge-DC-SQUID; see Section 1I.B) and the 
particles studied (ellipses with axes between 50 and lOOOnm and thickness 
between 5 and 50 nm) were fabricated using electron beam lithography. Electro- 
deposited wires (with diameters ranging from 40 to lOOnm and lengths up to 
5000 nm) were also studied [35,74]. Waiting time and switching field measure- 
ments (Section 1V.B) showed that the magnetization reversal of these particles 
and wires results from a single thermally activated domain wall nucleation, 
followed by a fast wall propagation reversing the particle’s magnetization. For 
nanocrystalline Co particles of about 50nm and below 1 K, a flattening of the 
temperature dependence of the mean switching field was observed which could 
not be explained by thermal activation. These results were discussed in the 
context of MQT. However, the width of the switching field distribution and 
the probability of switching are in disagreement with such a model because 
nucleation is very sensitive to factors like surface defects, surface oxidation, 
and perhaps nuclear spins. The fine structure of pre-reversal magnetization states 
is then governed by a multivalley energy landscape (in a few cases distinct 
magnetization reversal paths were effectively observed [59]) and the dynamics 
of reversal occurs via a complex path in configuration space. 

Coppinger et al. [23] used telegraph noise spectroscopy to investigate two- 
level fluctuations (TLF) observed in the conductance of a sample containing 
self-assembled ErAs quantum wires and dots in a semi-insulating GaAs matrix. 
They showed that the TLF could be related to two possible magnetic states of a 
ErAs cluster and that the energy difference between the two states was a linear 
function of the magnetic field. They deduced that the ErAs cluster should con- 
tain a few tens of Er atoms. At temperatures between 0.35 K and 1 K, the 
associated switching rates of the TLF were thermally activated, whilst below 
0.35 K the switching rate became temperature-independent. Tunneling of the 
magnetization was proposed in order to explain the observed behavior. 

Some open questions remain: What is the object that is really probed by 
TLF? If this is a single ErAs particle, as assumed by the authors, the switching 
probability should be an exponential function of time. The preexponential factor 
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5;' (sometimes called attempt frequency) mas found to lie between lo3 and 
1 0 ' ~ ~ '  whereas expected values are between lo9 and 1 0 " ~ ~ ' .  Why must one 
apply fields of about 2 T in order to measure two-level fluctuations which should 
be expected near zero field? What is the influence of the measurement technique 
on the sample? 

By measuring the electrical resistance of isolated Ni wires with diameters 
between 20 and 40nm, Hong and Giordano studied the motion of magnetic 
domain walls [24]. Because of surface roughness and oxidation, the domain 
walls of a single wire are trapped at pinning centers. The pinning barrier 
decreases with an increase in the magnetic field. When the barrier is sufficiently 
small, thermally activated escape of the wall occurs. This is a stochastic process 
that can be characterized by a switching (depinning) field distribution. A flatten- 
ing of the temperature dependence of the mean switching field and a saturation 
of the width of the switching field distribution (rms. deviation o) were observed 
below about 5 K .  The authors proposed that a domain wall escapes from its 
pinning site by thermal activation at high temperatures and by quantum tunnel- 
ing below T, N 5 K. 

These measurements pose several questions: What is the origin of the pinning 
center which may be related to surface roughness, impurities, oxidation, and so 
on? The sweeping rate dependence of the depinning field, as well as the depin- 
ning probability, could not be measured even in the thermally activated regime. 
Therefore, it was not possible to check the validity of the NCel-Brown model 
[9,10,86-881 or to compare measured and predicted rms. deviations o. Finally, 
a crossover temperature T, of about 5 K is three orders of magnitude higher than 
T, predicted by current theories. 

Later, Wernsdorfer et al. published results obtained on nanoparticles synthe- 
sized by arc discharge, with dimensions between 10 and 30nm [36]. These 
particles were single crystalline, and the surface roughness was about two atom- 
ic layers. Their measurements showed for the first time that the magnetization 
reversal of a ferromagnetic nanoparticle of good quality can be described by 
thermal activation over a single-energy barrier as proposed by NCel and Brown 
[9, 10,864381 (see Section 1V.C). The activation volume, which is the volume of 
magnetization overcoming the barrier, was very close to the particle volume, 
predicted for magnetization reversal by uniform rotation. No quantum effects 
were found down to 0.2 K. This was not surprising because the predicted cross- 
over temperature is Tc-0.02 K. The results of Wernsdorfer et al. constitute the 
preconditions for the experimental observation of MQT of magnetization on a 
single particle. 

Just as the results obtained with Co nanoparticles [36], a quantitative agree- 
ment with the NCel-Brown model of magnetization reversal was found on 
BaFe12_2xCoxTi,019 nanoparticles (O<x<l) [37], which we will call BaFeO, 
in the size range of 10-20 nm. However, strong deviations from this model were 
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evidenced for the smallest particles containing about lo5 p B  and for temperatures 
below 0.4 K. These deviations are in good agreement with the theory of macro- 
scopic quantum tunneling of magnetization. Indeed, the measured angular 
dependence of TJ0)  is in excellent agreement with the prediction given by 
(4.11) (Fig. 52) .  The normalization value TJ45") = 0.3 1 K compares well with 
the theoretical value of about 0.2 K. 

Although the above measurements are in good agreement with MQT theory, 
we should not forget that MQT is based on several strong assumptions. Among 
them, there is the assumption of a giant spin; that is, all magnetic moments in the 
particle are rigidly coupled together by strong exchange interaction. This approx- 
imation might be good in the temperature range where thermal activation is 
dominant, but is it not yet clear if this can be made for very low energy barriers 
(see, for example, Section IV.C.4). Future measurements might give us the answer. 

3. Quantization of the Magnetization 

In order to give a definite proof that MQT can occur in a magnetic nanoparticle 
we propose to surge for the energy level quantization of its collective spin state. 
This was recently evidenced in molecular cluster like Fe8 having a collective 
spin state S =  10 (Section V.A). In the case of the BaFeO particles with S=105 
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Figure 52. Angular dependence of the crossover temperature T, for a 10-nm BaFelo4Coog. 
Tio 8019 particle with Ss105. The lines are given by (5.11) for different values of the ratio a = H-/ 
HI,. The experimental data are normalized by TJ45") =0.31 K. 
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[37], the field separation associated with level quantization is rather small: 
A H  M HJ2S = 0.002 mT where Ha is the anisotropy field. However, for a 3-nm 
Co cluster with S = lo3 the field separation AH = HJ2S N 0.2 mT might be large 
enough to be measurable. 

Figure 53 displays schematically the field values of resonances between 
quantum states of S. When the applied field is ramped in a certain direction, 
the resonance might occur for fields H,,, = n x (Ha/2S)( Ikos 0), with 
n = 1 ,2 ,3 , .  . .. 0 is the angle between the applied field and the easy axis of 
magnetization. For large spins S, tunneling might be observable only for fields 
which are close to the classical switching field (Fig. 53). The resonance fields 
could be evidenced by measuring switching field distributions (inset of Fig. 53) 
as a function of the angle 8. 

Such a study is presented in Fig. 54 for a 3-nm Fe cluster with S %  800. The 
estimated field separation A H  = Ha/2S is about 0.1 mT whereas the width of the 
switching field distribution is about ten times larger. We observed sometimes a 
small periodic fine structure which is close to the expected A H .  However, this 
fine structure always disappeared when averaging over more measurements. A 
possible origin might be hyperfine couplings that broaden the energy levels 
(Section V.B.4) leading to a complete overlap of adjacent energy levels. It is 
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Figure 53. Schematic view of the resonance fields of a giant spin S. The continuous line is the 
classical switching fields of Stoner-Wohlfarth (Section 1II.A). The inset presents schematically a 
switching field histogram wjith AH'=(H,/2S)( licos 0). 
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Figure 54. Angular dependence of the switching field of a 3-nrn Fe cluster with S-800. The 
inset presents detailed measurements near the easy axis of magnetization. 

also important to mention that the switching field distributions were 
temperature-independent for 0.04 K<T<0.2 K. 

In some cases, we observed huge variations of the switching field (Figs. 30 
and 31) which might be due to exchange bias of frustrated spin configurations. 
However, quantum effects are not completely excluded. 

Future measurements should focus on the level quantization of collective spin 
states of s = lo2. 

VI. SUMMARY AND CONCLUSION 

Nanometer-sized magnetic particles have generated continuous interest as the 
study of their properties has proved to be scientifically and technologically very 
challenging. In the last few years, new fabrication techniques have led to the 
possibility of making small objects with the required structural and chemical 
qualities. In order to study these objects, new local measuring techniques were 
developed such as magnetic force microscopy, magnetometry based on micro- 
Hall probes, or micro-SQUIDS. This led to a new understanding of the magnetic 
behavior of nanoparticles. 

In this chapter we reviewed the most important theories and experimental 
results concerning the magnetization reversal of single-domain particles and 
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clusters. Special emphasis is laid on single-particle measurements avoiding 
complications due to distributions of particle size, shape, and so on. Measure- 
ments on particle assemblies have been reviewed in Ref. 8. We mainly discuss 
the low-temperature regime in order to avoid spin excitations. 

Section I1 reviews briefly the commonly used measuring techniques. Among 
them, electrical transport measurements, Hall probes, and micro-SQUID tech- 
niques seem to be the most convenient techniques for low-temperature measure- 
ments. 

Section 111 discusses the mechanisms of magnetization reversal in single- 
domain particles at zero kelvin. For extremely small particles, the magnetization 
should reverse by uniform rotation of magnetization (Section 1II.A). For some- 
what larger particles, a nonuniform reversal mode occurs like the curling mode 
(Section 1II.B). For even larger particles, magnetization reversal occurs via a 
domain wall nucleation process starting in a rather small volume of the particle 
(Section III.B.3). 

The influence of temperature on the magnetization reversal is reported in 
Section IV. We discuss in detail the Neel, Brown, and Coffey’s theory of mag- 
netization reversal by thermal activation (Section IV). 

Finally, Section V shows that for very small systems or very low temperature, 
magnetization can reverse via quantum tunneling. The boundary between clas- 
sical and quantum physics has become a very attractive field of research. This 
section discusses detailed measurements which demonstrated that molecular 
magnets offer an unique opportunity to explore the quantum dynamics of a large 
but finite spin. The discussion is focused on the Feg molecular magnet with 
S =  10 because it is the first system where studies in the pure quantum regime 
were possible. We showed that the understanding of the environmental decoher- 
ence is one of the most important issues, in particular for future applications of 
quantum devices. We then discussed tunneling in nanoparticles and showed how 
one might give a definite proof of their quantum character at low temperature. 

In conclusion, the understanding of the magnetization reversal in nanostruc- 
tures requires the knowledge of many physical phenomena, and nanostructures 
are therefore particularly interesting for the development of new fundamental 
theories of magnetism and in modeling new magnetic materials for permanent 
magnets or high density recording. Using the quantum character of nanostruc- 
tures for applications like “quantum computers” will be one of the major con- 
cerns of the next decades. 
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