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1 GENERAL INTRODUCTION

From the early days of studying transition metal complexes, researchers have been
intrigued by their intense colors and unusual magnetic behavior. In recent years
the spectroscopic methodology available to rigorously study these and other prop-
erties has become extremely sophisticated and covers more than 10 orders of mag-
nitude in photon energy. Different energy regions provide complementary insight
into the electronic structure properties of a transition metal complex; and by uti-
lizing the appropriate combination of methods one can address and solve essen-
tially any spectroscopic problem. This can be of importance on a fundamental level
(high resolution spectroscopy at 2 K on single crystals of high symmetry complexes)
or in application to problems of wide general interest to the scientific community
(Bioinorganic Chemistry, Materials Science, Environmental Chemistry, etc.). Lig-
and field theory provides a basis for understanding many of the wide range of spec-
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troscopic observables in terms of the electronic structures of transition metal com-
plexes.

The roots of ligand field theory are in group theory and geometry and indeed the
parameters of the model to be developed in Section 2 are best viewed as defined by
the symmetry of the complex. Often real systems have little or no symmetry; how-
ever, significant insight can still be achieved by viewing these o@EU_oxom as low sym-
metry perturbations on a higher “effective symmetry” system. In 1929 Hans Bethe
described the energy splitting of a many electron metal ion’in a crystal lattice site
and developed much of the formalism of the method.! This is a Mv_:n electrostatic
model (negative point charge ligands having a repulsive intetaction with electrons
on the metal ion) and allows for no overlap (i.e., no covalent co:a.m.v. It was even-
tually recognized that a quantitative evaluation of the key parametef of crystal field
theory, 10 Dg (see Section 2), gives a value that is an order of magnitude smaller
than is experimentally observed and does not predict correct trends in 10 Dg with
ligand variation. Van Vleck demonstrated that the problem with crystal field theory
is its neglect of overlap with the ligand valence orbitals.”

Covalency is included in crystal field theory by recognizing that the parameters
of the model are dictated by symmetry and by the interelectronic repulsion which
is well defined in the free ion. These can then be adjusted to fit the experiment and
the resultant parameters can be interpreted in terms of bonding interactions with the
ligands. This is known as ligand field theory which has great utility in describing a
large number of experimental observables in terms of a few experimental parame-
ters.

Ligand field theory (and the related angular overlap model) provides much of the
basis for our understanding of the magnetic, EPR and d — d spectroscopic proper-
ties of a transition metal complex. However, when one considers higher energy states,
more covalent ligands, and the effects of covalency on the parameters of any spectro-
scopic region, one must utilize the most general description of bonding, molecular
orbital theory.

In Section 2, we develop the different models for describing the energy splittings
of the d orbitals of the metal ion in any ligand environment: crystal field theory,
ligand field theory, the angular overlap model, and molecular orbital theory. In Sec-
tion 3, we allow for more than one negative electron or positive hole in these d
orbitals. One of the powers of ligand field theory is its ability to incorporate the
experimental electron repulsion parameters of atomic theory into the bonding de-
scription of transition metal complexes. This is developed from both the weak field
and strong field approaches, the latter being used to generate the ligand field energy
level diagrams for transition metal complexes. In Section 4 we consider how these
diagrams and the more general molecular orbital description of bonding relate to key
physical properties of metal complexes: geometry, magnetism, spectroscopy and co-
valency. This chapter provides the basis for understanding the spectroscopic methods
developed in detail in the following chapters. The modern molecular orbital methods
for describing the electronic structure of transition metal complexes are presented in
Chapters 10 and 11.
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2 ONE-ELECTRON ORBITAL ENERGIES IN TRANSITION METAL
COMPLEXES

2.1 Crystal and Ligand Field Theory

A metal ion in the gas phase, that is, a free ion, has five degenerate d orbitals which
are defined in Eqn. (1). R,; is the radial function of the electron with quantum num-
bers n and [, and the remaining component of each orbital is a spherical harmonic
(Y;") which is dependent on the quantum number /m; and is described using the polar
coordinates of the electron as defined in Figure 1.

d(m; =0) = Ru/(1/2m)/(5/8)(3cos* 6 — 1)
d(m; = £1) = Ry/(1/27)/(15/4) cos 6 sin @ - e*'¢
d(m; = £2) = Ry /(1/27)/(15/16) sin 6 - e*2¢ (1

From group theory, when the metal ion is placed in a ligand environment of octa-
hedral (Oy,) or lower symmetry, these ¢ orbitals must split in energy as the highest
dimension irreducible representation in Q) symmetry is three (77 or 73). It is the
goal of this section to determine this energy splitting quantitatively. In the crystal
field model one treats the ligands as negative point charges and evaluates their repul-
sive interactions with the electron in the ¢ orbitals assuming that there is no overlap
of the ligand with the metal & orbitals.

The energy of an orbital ®; is given by the matrix element:

E = (0;|V|di) 2

where, in crystal field theory, V is a Hamiltonian operator describing the symmetry
(geometry) of the environment.

In our case the ®; are fivefold degenerate in the free ion and one must solve a
secular determinant to extract the energies of the set of wavefunctions in the crystal
field. Assuming a general crystal field V perturbing the d orbitals, the general secular

Figure 1. Polar coordinates for electron j and ligand i in the point charge model.
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determinant shown in Eqn. (3), is obtained.

my 2 1 0 —1 -2

2 |(21lVI2)—E| (21V]1) (21V]0) 2|V]—1) (2lV]—2)

1| (AVv]2) [(VI)—E[ (1[V]0) (1vi-1) (11v]-2) =0 (3)
0] {0|v]2) o [(ovio)—E[  (O|V|=1) (0| V| =2)

=1 (=1V]2) | (=1IVI1) | (=1VI0) |{(=LVI=-1)—-E| (=1]V[=2)

—2] (=2|V]2) | (=2|VI1) | (=2|V]0) (=21V|—1) [(=2|V|=2]-E

The magnitudes of these elements must be evaluated ::Bmao»:w and then the
determinant is solved to extract the energies of the five d orbitals in the field de-
scribed by V. Except in situations of extremely low symmetry, we can expect that
many, if not most, of the off-diagonal elements in determinant (3) will be zero. Fortu-
nately, it is possible to determine that an element is zero without the need to actually
evaluate it, as will be demonstrated below. Once all the numerical magnitudes are
available, the determinant is diagonalized. This involves matrix manipulation such
that all the off-diagonal elements are zero. The numbers remaining on the diago-
nal of the matrix are then the five (in this case) solutions of the determinant. They
represent the energies of the 5 d orbitals in the field V. This secular determinant
is simply the matrix form of a set of five simultaneous equations in five unknowns.
Note that the sum of the diagonal elements of this determinant equals the sum of
the energies of the roots and the wavefunctions which diagonalize the matrix are the
appropriate one-electron d orbitals, that is, they are the symmetry-adapted wavefunc-
tions for the ligand environment of the complex (e.g., see development in Eqns. (27—
29)). .

2.1.1 Construction of a Crystal Field Hamiltonian The potential associated with
an electron, j, at a distance r;; from a negatively charged ligand, i, of charge Z; is
given by (Figure 1):

S = N_. 0\3\ TC

By summing this potential over all ligands, the total energy of each electron in the
field can be derived. The potential, 1/r;;, experienced by an electron in a crystal
field, can be expanded in terms of spherical harmonics Y/" (6, ¢) centered at the
origin. Since the d orbitals (in (1)) are also described in terms of spherical harmonics
centered at the metal nucleus as origin, the harmonics describing 1/r;; can also be
centered at the metal nucleus. The potential then takes the form:

k

MU|NF =Y 3 @n/@k+1)
k=0

rio—r
1 J g=—k

i

x 3" ZieY 6, @) - (rE /(M) - Vi 6). @) (5)

i
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where v\\w (6, ¢i) refers to the ligand, and SM\ (0, ¢;) refers to the electron. The dis-
tances r- and r-. are the shorter and longer of the radial vectors connecting the origin
to the electron and to the charge (ligand). Usually it is assumed that the electron does
not move far from the metal nucleus so that - refers to the electron—nucleus dis-
tance, and r-. the metal-ligand bond.

The first spherical harmonic in (5) describes the angular coordinates of the ligand
(charge) and is defined by their polar coordinates (7, 6;, ¢;). The second spherical
harmonic in (5) describes the angular coordinates of the electron, defined by its polar
coordinates (r-, 6, ¢ ;). We decide which SM\ functions to use for a particular stereo-
chemistry by using group theory. Since the geometry of a molecule is intrinsic and in-
dependent of its orientation, in that it is not changed by any symmetry operation such
as rotation or reflection, the Hamiltonian operator must be totally symmetric, such
that whatever geometry is described by these harmonics, their linear combination
must transform as the totally symmetric representation in the molecular point group.

The group theoretical transformation properties of the ¥;" functions are deter-
mined by their L value, which is their angular momentum quantum number (vide
infra, Eqn. (80)). In an octahedral environment, angular momentum transforms as:

L=0—> A L=1-Ty L=2- E;+Ty;
N\”wl.v\»w:.*uﬂN:\Tﬂ_:“ N\“n_.lvk»_n+mh+ﬂ_h+ﬂ.wn AGV

Thus in an octahedral environment only harmonics with L = 0 and 4 span A, and
can then contribute to the Hamiltonian. For d orbitals we need only consider L < 4.
We shall see that matrix element (2) can be construed as the coupling of angular
momenta in a vector sense. A property of such coupling is that the three components
must be capable of forming a triangle. Thus to couple two d functions, each of | = 2,
we cannot use harmonics greater than L = 4 since otherwise we would not be able
to form this triangle. Similarly to couple f functions (/ = 3) together we can use
harmonics up to L = 6. For lower point groups, one should take the representations
listed in (6) and determine which representations are spanned by these functions in
the lower group. For example, in Dy, we still exclude L = 1, 3 since they are odd
in any group with a center of symmetry. However L = 2 functions now contribute
since Eg(Oy) correlates with Ajg + Bjg in Dyy.

As an example, consider the generation of the Hamiltonian for a square planar
(Dg4p,) complex using, in Eqn. (5), the k = 2,4 harmonics as noted above (k = 0
can be ignored since it will affect all the d orbitals to the same extent). In the usual
polar coordinate representation (Figure 1), the four ligands lie in the xy plane at 90°
to the z axis (i.e., @ = 90°). The ¢ values (angle with the x axis when the ligand is
projected into the xy plane) for the four ligands, 1-4, will be 0°, 90°, 180° and 270°,
respectively. A completely general Hamiltonian using L = 2 and 4 harmonics can
be written

V= Ze/rij=c Rar) Yy + 3 Ro(r)(Y7 + Y5 72)
i

+e Ra(r) - Y9+ ci - Ra)(YE +Y7) +cf - Ra) (Y + Y ) (Ta)

|

.
,
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where
4
g _ [\, q )
&=\ N.NMSQ.%
l
Ri(r) = rk /rktt o (7b)

with the equivalent contributions from the components (-2, +2) and (—4, +4)
mq.o:mma together. Note that the .S_w_ and &E terms are omitted since they do :om con-
5@:8 to fourfold group geometries. They may be needed for threefold axis groups
or if wavefunctions quantized along a threefold axis were required.? _

«\ ‘ , . .
Hzn n.» <m_=nvm8@<m_=~:namm*o__oém, :E:m SM\ :23038¢o§.>%n:&x_,3\
summation over the ligands ¥

I

4
3 =) Ze(4n/5)\/(5/8) /(1/21)(3 cos20 — 1)
i=0
Ze(41/5)\/(5/8) /(1/27)(—4)
= —4Ze\/(7/5) (8)

where the (—4) is the sum of (3cos?H — 1) over the four ligands for which
c0s(90) = 0.

,;M MaBmm:ﬁm components can be obtained from Table 1.
The ¢; and ¢~ sum to zero in this geometry. Considering n.m and nMI. we find:

4 .
=Y Ze(dr/9)y/(9/128) \/(1/27)(35 cos’ 6; — 30cos 6; + 3)
i=0
= Ze(47/9)v/(9/128) \/(1/27)(+12) = Ze(/7)
4

= > " Ze(d7/9)\/(315/256) /(1/27) sin* 6, 4%

i=0
= Nmﬁu\ov,\@_M\wmov/\: /2m)(+4) = Nmf\mv,\uM\_m 9)
Table 1
,.WN qm N.MWN smE

Ligand 6; ¢; sin2 0 e*2i¢ 35054 6; — 30 cos? 6; +3 sin? 0(7cos? 6 — 1)etdd gin4 g E4i¢

1 90 0 1 3 1 1
2 9 90 =] 3 -1 1
3 90 180 1 3 1 1
4 90 270 =1 3 -1 1
Total 0 12 0 4
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Collecting the terms and incorporating into Eqn. (7) generates the Hamiltonian suit-
able for a square planar Dy, complex, MLy:

«\,E.E. = NmAz\wl«.v_H - &C\)\WVA%N\QJ%
+ (r*/a®) (Y9 + VB5/18) (Y] + ¥ )] (10)

where the in-plane metal-ligand distance, r-. is a.

The inclusion of two additional equivalent ligands, L, along the z axis, to the
square plane (i.e., at (6, ¢) = (0,0) and (180, 0)-generates the Hamiltonian for an
octahedral complex. The reader should prove that the addition of these two equivalent
ligands will indeed cause the %wo terms to disappear. The addition of two ligands, X,
(# L) generates the tetragonal complex ML4X>, also of Dg; symmetry. This is most
simply treated in this formalism by assuming that these ligands lie at a distance “*b”
instead of “a”. It does not matter if, in reality, these are chemically different ligands;
the methodology will simply generate semiempirical parameters which will reflect
the difference in “field” generated by L and by X.

Vo, = Vo, + Vietrag
V (Dan) /\g/\gﬁml\amx% +/5/14(vy + ¥,
—27e/@m) [ 2/5)((r*/a) — (r/P*))YS]
—22e/Cm)[V@/9((r*/a’) = (r*/6%) Y]] (L

This Hamiltonian will give (10) if the “b” terms are omitted and generate the Oy,
Hamiltonian if “b” = “a”. The first line in (11) is the octahedral Hamiltonian.

In this fashion, crystal field Hamiltonians for any geometry can be constructed
by inserting the angular coordinates of the ligands into the general equation (5) and
summing the results. The actual n.N (or M\MJ which are required are most easily derived
by noting which of the L = 1,2,3,4 terms span Ay (or Ajg) in the molecular
symmetry group concerned. If the molecule does not have a center of symmetry,
then harmonics with L = 1 and 3 may also contribute. These then are added to the
general Hamiltonian (7).

Il

2.1.2  Evaluation of One-Electron Crystal Field Matrix Elements  Several rather
different procedures exist to derive the matrix elements of the crystal field Hamil-
tonian.

2.1.2.1 Manual Integration To develop methods to evaluate the magnitudes of the
matrix elements of these Hamiltonians consider first that a d orbital may be expressed
in terms of spherical harmonics according to its m; value as given in Eqn. (1).
Suppose we evaluate the energy of the m; = 0 orbital, which corresponds
with d.», in an octahedral field. If the octahedral Hamiltonian is broken down into
the u\% and ﬁi components, then the v\% component may be written (Im|V|lm) =
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(20]Y,)|20) and expanded as:
(201¥7120)
n\?:\:\Ni,\a\mv,\ﬁc\_mvz\aiﬁn{\%v?/\:\Ni)\a\m:w%

x/(1/27)4/(9/128) \am cos* 6 — 30cos” 6 + 3)(3cos’ 6 — 1)%sin6 do

= a4(5/8)/(49/18)/(9/128)(1//27) \am cos* 6 — 30 cos? & +3)

PR

x (3cos’ @ — 1)*sin6 df sy (12)
where, for 3d electrons: . )
@ = Ze? \ R3a(r*/a®)Raq - r* dr = Ze*(r2/a3) :

oy = Nmm\. wuix»\z,Jx.i R NomAu\mv‘ - (13)

Two alternate general procedures exist to evaluate the magnitudes of these matrix
elements (m;| SSC in (12). The right-hand side of (12) signifies integration over all
space of a triple product of functions. This can be handled in a standard mathematical
way but becomes extremely cumbersome for complicated Hamiltonians with many
components. We do not develop this classical procedure here.

Before considering an efficient procedure to evaluate these integrals, note that the
magnitudes of these ¢ matrix elements are expressed in terms of radial integrals, «,,,
usually called, for example for fourfold groups, Ds, Dt, and Dg, where:

.

Dg = (1/6)Ze*(r*/a’) = (1/6)aa(a)

Ds = /7 Z*[(r?/a® — r2/b3)] = 2/Dlea(a) — a2 (b))

Dt = (2/21)Ze*[(r*/a> — r#/b5)] = (2/2D)as(a) — as(b)]

Dt = (4/7)[Dq(Eq) — Dq(Ax)] (14)

where Dg(Eq) and Dg(Ax) are the equatorial and axial crystal field strengths. These
radial integrals are treated as empirical parameters and evaluated by solving the elec-
tronic spectrum (see Section 2.1.4.).

The left-hand side of Eqn. (12), written in the Dirac formulation in momentum
space, signifies the coupling of two angular momenta to give a resultant angular mo-
mentum. This more modern approach is especially adaptable to computer evaluation,
and will be developed here.

2.1.2.2  Tensor Methods and the Wigner—Eckart Theorem*!! Given that both the
operators and the wavefunctions can each be expressed in terms of spherical harmon-
ics, which are themselves measures of angular momentum, the fundamental element
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which needs evaluation is of the form (Y,|Y¥p|Y.). Scalars (simple numbers with no

direction) and vectors (magnitude and direction) are well known. These are subsets

of the more general fensor which may be written Cx? where & is the rank of the tensor

and ¢ is its component. For example k and ¢ may relate to the quantum numbers L

and M. Scalars are tensors of rank zero and vectors are tensors of rank 1. A C;?

tensor has (2k + 1) components in parallel fashion to the (2L + 1) values for M/ .
These tensors are related to the spherical harmonics via:

Ci? = (4m/(2k + 1) /2y (15)
Some common Cy 9 are:
Cl=1; C%=cos0; Ci*'==F(1/2)"*sinoe*?
1 g\ /2 A
Qwoumﬁoomwml_v“ G =3 5 cos 0 sin 6 e='?
3\ 1/2 _
P =(Z) sin?ge*%? (16)

8

Substituting Eqns. (14) and (15) into our Dy;, Hamiltonian (11), as an example, yields
the rather simple form:

Voan = 21Dg[C4° + J/(5/14)(C4* + C4~*)] = 21D1C,° = TDsC,° (17

Any other ligand field Hamiltonian can be similarly constructed using Dg, Ds, and
Dt or a2, a4 etc. as appropriate. The one-electron matrix elements (2) of these ligand
field operators then collapse to a series of sums of (d;|Cx?|d;) involving the tensor
operators Cx?. Now we explore how they are evaluated.

Two one-electron functions | j, m j) (where j may be [, s, or j) can be coupled by
a general tensor operator, C 9, via:

. ./ j— j \ﬂ i’ . ./
(jmicttjm) = =0y ( 2o o ) GG (18)

where (j||Cx|lj’) is a reduced matrix element of the tensor operator, obviously inde-
pendent of component m, and the term in parentheses which is a Wigner 3-j symbol,
contains all component dependence. These are available in a tabulation (see Appen-
dix 2) or readily calculated. The beauty of the Wigner—Eckart theorem!? is that it
separates those aspects relating to the symmetry of the molecule (the 3-; symbol)
and the physical properties of the system contained within the reduced matrix ele-
ment. The procedure is also elegant because one can solve for the reduced matrix
element using a simple case and then use the same value for much more complex
situations, 1011

This expression (18) is an extremely powerful procedure for evaluating integrals
arising from the coupling of any wavefunctions by any operator capable of being
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written in angular momentum terms. The reader should look closely at how the
3-j symbol is written in terms of the various components of the matrix element on
the left. The numerical values of these 3-j symbols have all been evaluated and are
available in various sources;>7-10-11.13 oo Appendix 2.

The reader should exercise caution in using these 3-; symbols especially with
respect to their sign. They have fundamental properties which should be clearly un-
derstood before they are routinely employed. These properties include:

i) They vanish (are equal to zero) if j, k, and J' do not form mu.im:m_o in their
:c:&oq mwmow. This is Em\mmoaz_o:zo:oa triangle rule; this may also be written
”wmﬁw.\_ .*.M\uWA» 2 |j — j'|. Thus if say, j = 2, j' = 2, then »&E..d oEv\ be equal

ii) The sum of the components in the bottom row must equal quow ‘

iii) If all three components in the bottom row are multiplied by —1, then the 3-j
symbol changes sign if the sum of the toprow, j +k + j isodd. "+ -

iv) if the columns are permuted, then the 3- symbol is invariant if j +k +j is even;
otherwise it changes sign under the influence of an odd number of w.m:::S:o:mw

. Matrix m._m_:o_.ﬁ of the Cx“ operator (in Eqn. (17) for example) can be evaluated in
this formalism C = J, 1, ors) simply as a product of the function shown in (18) and
the component independent reduced matrix element which can be evaluated using:

Ui = @i+ nej +o] 2 (3 k7 (19)

Thus, _A.:osm:w.n_o values of the 3-; symbols, and the reduced matrix elements, the
evaluation of (jm|Cy4|j'm’) becomes straightforward and rapid.

(imlCy?j'm')

=@+ o+ ) (4 K Y kT
[ \;ooolsgs\ (20)
Thus, for example, to evaluate (22|C,°)22) = (2 — 2102012 — 2):
2210°122) = (=72 + 1 (2 2 2)( 2 2 2
( ) v:+:ooolwow 21
(221C2%122) = +1 x 5 x (=/(2/35)) x /(2/35) = —2/7 (22)

. For ease of text expression in the following discussion, we use a condensed form
of the 3-j symbol, namely (J1J2J3/mimam3) (i.e., for the right-hand 3-j symbol in
Eqn. (21), (222/ — 202). Similarly for the nonzero C4° matrix elements:

(20€4°[20) = (—=1)° x 5 x /(2/35) x \/(2/35) = 2/7

0
(21]Ca%[21) = 2 = 11C4%12 - 1) = (= 1)~ x 5 x /(2/35) x V(8/315)=—4/21



12 LIGAND FIELD THEORY

(22|C4°%|22) = (2 = 21C4%2 = 2) = (1) 7% x 5 x \/(2/35) x 4/(1/630) = 1/21
(22|C4*2 - 2) = (2 — 21C4™4122) = (—=1)7% x 5 x /(2/35) x (1/3)

= 4/(10/63) (23)

The Wigner—Eckart theorem and this tensor methodology provide a rapid procedure

for evaluating the matrix elements of crystal field operators.
The octahedral Hamiltonian is simply (from (17), Ds = Dt = 0):

Voo = 21Dg[C4® + /(5/14)(Ca* + C47%)] 24)
Then:

(20| Vot |20) = 21Dg[(0]C4°|0) + +/(5/14)(0|C4* + C4~*|0)]
21Dg[(2/7) + /(5/14)(0)] = 6Dq

(22| Vout|22) = (—2| Vol — 2) = 21Dg[(1/21) + /(5/14)(0)] = Dq
( ) = (—=1|Vou| — 1) = 21Dg[(—4/21) + /(5/14)(0)] = —4Dq
and finally:
(22| Voet|2 — 2) = 21Dg[0 + /(5/14)(/(10/63))] = 5Dq (25)

yielding the secular determinant (26).

Vo | 12,2) 12, 1) 12, 0) 12, 1) [[2,=2)

12,2) |Dg— E 0 0 0 5Dq

2,1 | 0 |-4Dg—E| 0 0 O 1_y
2,0) | 0 0 6Dg— E 0 0 (26)
2,-1) 0 0 0 |-4Dg—E| 0
12, —2)| 5Dq 0 0 0 |Dg—E

The solution to this secular determinant generates the well-known octahedral split-
ting energies + 6Dg (twofold degenerate ¢, set) and —4Dgq (threefold degenerate 15,
set).

If an element of the form (0;|V|6;) is nonzero, this implies that the basis or-
bital ¢; is mixed with the basis orbital 6; by the operator V. Thus the symmetry
adapted wavefunction (i.e., a wavefunction which transforms properly as one of the
irreducible representations of the point group concerned) will be a linear combina-
tion of ; and 6;. To obtain the correct form of this wavefunction, or generally of
all the wavefunctions described by the secular determinant, we utilize the energies
of the wavefunctions to solve the set of simultaneous equations which the matrix
represents. Thus for secular determinant (26), we can write, from the top line of the
determinant:

(Dg — E)x +5Dgy =0 (27)
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where x is the coefficient required for |2, 2) m:a y _w Sn coefficient required for
|2, —2). Further, because of normalization, x*> + y? = 1. Inserting the solution
E = +6Dgq into (27) and solving yields x = y = 1/,/2 m:& therefore the wave-

function with the energy + 6Dq is of the form:
1/4/2[12, 2)+]2, —2)] (which corresponds with the real d(x? — .<Nv orbital) (28)
Similarly, inserting £ = —4Dg, then x = —y = 1/,/2 and the €m<.@m~..._=o:o: is:
1/4/2[12,2) — |2, —=2)] (which corresponds with the real d (xy) ,o&:wc (29)

The remaining three orbitals, [1), |0), and |—1) are already o_wmsmﬁmam Om the oc-
tahedral operator, which is to say they are diagonal with no off- a_mmozm_ elements
cﬂéo@: themselves or with any other d orbital. The orbital |0) corresponds: with

z?) lying at+ 6Dgq, and is degenerate with the d (x> — y2) orbital forming the ¢, set
o* o_‘c:m_m in the octahedral field. The orbitals |1) and |—1) are degenerate at —4Dgq
and thus one can take their in and out-of-phase normalized combinations to form
the real d(yz) and d(xz) orbitals respectively. Together with d(xy) these form the
threefold degenerate 1, set of orbitals in the octahedral field. The eg and 17, orbitals
are said to be symmetry-adapted to the octahedral field.

It should now be evident that if we had used the set of 5 symmetry-adapted wave-
functions themselves, instead of the |m;) basis set, the resulting secular determinant
would already have been diagonal, that is, all the off-diagonal elements would be
zero because the field V is totally symmetric (i.e., transforms as the totally symmet-
ric representation of the group) and they therefore would not mix wavefunctions with
different symmetry representations. This can be seen by noting that:

(1/5/2012,2) = 2. =2)IV[1//2(12.2) — |2, —2)))
1/2{@2IV[2) + (—=2|V| = 2) = 2(2|V| - 2)}
1/2{1Dg + 1Dg + 2 x5Dq} = +6Dq (30)

Il

and similarly:
(1/5/2012,2) + 12, =2)|V|1/4/2(12, 2) + |2, —2))) = —4Dq
and:
(1/5/2012,2) = 12, =2)|VI1//2(12,2) + |2, =2))) = 0 (31)
In the octahedral case (determinant in (26)) the diagonal energies of both |2, 2)
and |2, —2) (61 and 6) are the same which then requires an equal mix (1/,/2) of each

function leading to the in and out-of-phase coupling represented in Eqns. (28,29).
Where the diagonal energies are different, a non-equal mix will occur, leading in the
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two-orbital mixing situation, to the two general wavefunctions:
aby + /(1 —ad)y and af — /(1 — )b (32)

Finally, we evaluate one of the elements for the tetragonal Daj, Hamiltonian (17) [see
(21-23)].

Il

21D4[(0]C4°[0) + v/(5/14)[(0]C+*[0) + {o]ca™*[0]]]
—21D4{0|C4°|0) — 7Ds(0|C2°|0)
21Dg1(2/7) + /(5/14)(0)] — 21D1(2/7) — TDs(2/7)

AMO_ Vpan ﬁov

Hence:

(20| Vpan|20) = 6Dg — 2Ds — 6Dt
The other terms can be obtained similarly:

(22|Vpan|22) = (2 — 2| Vpan|2 — 2) = Dg + 2Ds — Dt
(21|Vpan|21) = (2 — 1|VDan|2 — 1) = —4Dg — Ds + 4D
(20| Vpan|20) = 6Dg — 2Ds — 6Dt

A

22|Vpan|2 — 2) = 5Dq (33)

The absence of any Ds or Dt contribution in this last off- diagonal element is seen
to be due to the inability of a 0 or c4® operator to couple |2, 2) with |2, —2) (sum
of the bottom row of 3-j symbols must equal zero).

For the real d-orbitals (Eqn. (34)):

d(x? — y?) = (1//2112, 2} + 12, —2)]

d(z%) = 12,0)

d(xy) = (1/iy2012,2) — 12, -2)]

d(xz) = —(1//2012, 1) = 12, -1)]

d(yz) = —(1/i/202, 1) + 12, =1)] (34)

these energies are (from (33) and (34)):

A — <N:\Caik~ I%JH@UQ.TNU,AIUN

(%|Vpan|22) = 6Dg — 2Ds — 6Dt

Ax<_<?:_ TQV —4Dq + 2Ds — Dt

(xz|Vpan|xz) = (yz|Vpan|yz) = —4Dq — Ds + 4Dt (35)

These methods are totally general for generating the d ! matrix elements of any crys-
tal field Hamiltonian. The energy splitting of the d-orbitals for octahedral, tetrago-
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Figure 2. A d-orbital splitting pattern for tetrahedral (7y), octahedral (Oy), tetragonal
six-coordinate (Dyy,, 6 CN), square (Dyj,, 4 CN) and trigonal bipyramidal (D3, 5 €N) fields.
The relative energy of the aj (d(z%)), orbital in a square species is arbitrarily shown. It may
lie below the by, or eg levels depending on the molecule concerned. i

nal, square planar, and tetrahedral fields obtained in this manner are given in Fig-
ure 2.

2.1.3 Companion and Komarynsky Method There may well be instances where
one is interested in the ¢ orbital energies and wavefunctions, but not in the actual
form of the crystal field Hamiltonian, which, in the case of a low symmetry species,
may be quite complicated. Companion and Komarynsky'# (CK) published a formal-
ism which yields these energies, based upon the polar coordinates of the ligands,
without independently deriving the actual Hamiltonian. Tables 2 and 3 give the lig-
and position functions Dy, and Gy, and Hy), integrals in terms of these ligand posi-
tion functions. Hyp, (a, b 1-5) are a shorthand notation for entries in the 5 x 5 real d
orbital crystal field matrix.

(2 = YHVIx? — y?) = Hy
(xz|V|xz) = twm

(IVI2%) = H33

(yz|Vlyz) = Haa
(xy|Vlxy) = Hss
and off-diagonal elements such as:

?N - .<w_<_N~v = H;3 etc. (36)
Four steps are followed to generate the required energies:

i) identify the polar coordinates of the ligand positions in terms of the angle 6;
and ®;, in Figure 1.
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Table2 Ligand Position Function, Dy, and G, '

i i
ccc 0

Il
R

. . u
Dijy = a}(35/3cos* 6; — 10cos” 6; + 1)

Umc = Q.wAccmm 6; —1)

1
Cm_ = Qm sin ; cos ; cos ¢;
Umw == QW sin? 0; cos 2¢;

UM,: = QM sin; cos 6;(7/3 ocv.N 6; — 1)cos¢;

Dum R_.“ sin6; (7 cos? 6; — 1) cos 2¢;

D.f &, sin? 6; cos b; cos 3¢;

Il

CM.K = Qr.,# sin? 6; cos 4¢;

Il

ih = ah sin® 6; cos 6; sin ¢;

Q.B = Qm sin? 6; sin 2¢;
iy =« sin® 6; cos 6;(7/3 cos® 6; — 1) sin
Qmu = QN. sin? 0; (7 cos? B; — 1) sin2¢;
G'y3 = oy sin 0; cos 6; sin 3¢
OH.E = Qm sin? 6; sin4¢;

ii) calculate the ligand position functions E.s and Q“s, for each ligand, and sum
over all ligands to generate Dy, and Gy,,. These will be associated with a set
of &/, terms for each non-equivalentligand in the complex. These functions relate
directly to the ¥/" functions in Eqn. (5). Where d orbitals are concerned, only
functions with / = 0, 2, or 4 are required (odd Y/" cannot couple even d orbitals).
We ignore the [ = 0 function which only raises all d orbitals by the same degree,
and hence need consider only terms in the radial parameter oz and a4;

iii) use these Dy, and Gy, values to generate the H,, secular determinant using
Tables 2 and 3; and

iv) solve this determinant for the desired energies.

For example, for a trigonal bipyramid, distinguishing the axial and equatorial lig-
ands using a, (Ax) and a, (Eq), then 6; = 90° for the equatorial ligands and #; = 0°
for the axial ligands, summing over all five ligands to generate:

Do = 4aa(Ax) — 3a2(Eq)
Do = (16/3)a4(Ax) + 3as4(Eq) (37)

Il

Using ®; = 0° for the axial ligands, and ®; = 0, 120, and 240° for the three
equatorial ligands, all other Dy, and G, values are seen to sum to zero. Then,
neglecting terms in D, D4» and Dag, which all sum to zero, from Table 3:

Py

Hy = Hss (E(x* — wm.xzvv
- IA_\v\vbNOA_IA_\M@vbAC

UON L Ut uvany — ..

Hyy = Doy — 1/7D20 + 1/56 D4 + 5/24Dyy

Hyp = Doo + 1/14Dy0 — 1/14Dy0 + 3/14D33 + 5/42Dy3
33 = Doo + 1/7D20 + 3/28 D49
Haq = Dog + 1/14Dgg — 1/14Dy0 — 3/14D)y — 5/42Dgn
Hss = Doy — 1/7D3g + 1/56Dygg — 5/24 Dy
Hyz = 3/1Da; —5/28D4) + 5/12D43
Hi3 = —/3/7D2 + 5./3/84Dygn
Hys = —3/1G2) + 5/28G4; + 5/12G43 i
Hys =5/24Gas
Hpy = /3/7Da) + 5/3/14Dy,
Hag = 3/14G 2y + 5/42G4; .
Has =3/1G) — 5/28G4; + 5/12G43
H3y = /3/7G1 +54/3/14Gy)
Hys = —/3/7G2 + 5/3/84G 42
Hys =3/7Day) —5/28Dyy — 5/12Dy3

x

(3/Ta2(Eq) — (4/T)a2(Ax) + (3/56)as(Eq) + (2/21)ata(Ax)
Hay (E(xz, y2))

(1/14)Dyo — (1/14) D4

—(3/14)aa(Eqg) + (2/T)a2(Ax) — (3/14)as(Eqg) — (8/21)as(Ax)
3 = E(z°)

(1/7)D2o + (3/28) D4o

(4/Naz(Ax) — (3/ T2 (Eq) + (9/28)as(Eq) + (4/T)ea(Ax) (38)

T
Il

X
l o

Since there are no nonzero off-diagonal H,, elements, in this example, the H,,,
energies accord directly with the real d orbital energies also included in Figure 2.
The CK method provides a facile procedure to generate these one-electron d-orbital
energies and associated wavefunctions through diagonalization of the secular deter-
minant from Table 3, for any stereochemistry. It would be relatively easy to extend
the tables of functions to make this also useful for other electron configurations.

2.1.4 Ligand Field Theory and the Spectrochemical Series While crystal field
theory has made a critical contribution to inorganic spectroscopy through its ability
to correctly predict the d-orbital splitting diagrams and rationalize and assign the
observed spectroscopy in terms of parameters such as Dg, Ds, Dt, and ay, it fails
to provide reliable information about the nature of the metal-ligand chemical bond
since it ignores covalency and treats the ligand as a point charge. Its success arises
because it is firmly grounded in symmetry.

The approach generally taken is to obtain, experimentally, numerical values for
these parameters from fits to spectra; this is known as ligand field theory. Innumer-



18 LIGAND FIELD THEORY

able attempts have been made to extract chemical information from the magnitudes
of these parameters. The most important parameter, Dg, varies with the bonding in-
teraction of the ligand with the metal center. Good m-acceptors have high Dg values,
while good 7-donors have low Dg values. This trend in Dg is known as the Spectro-
chemical Series:

I <Br <ClI” <S$* <*SCN™ < Ny <F < dic™ <urea < OH™ < OAc™
< oxalate’~ &~ malonate’~ &~ 0>~ < H,0 < SCN*~ < EDTA < pyridine
~ NH3 < en ~ tren & EO&T < [NO;]— ~ 2,2 — bpy & o-phen < H
~ CH; = ph- < CN™ < constrained phosphites ~ CO (39)

Its origin in molecular orbital theory is developed in Section 2.3.1. The Dt parameter
is a derivative parameter in that it is a measure of the difference between axial and
equatorial Dg values (Eqn. (14)), while the Ds parameter has not been reliably shown
to have chemical significance.

Thus the next step is to recognize that there is covalency in the metal-ligand bond.
This can be done through employment of a variety of molecular orbital methodolo-
gies which will be addressed in Section 2.3. First, however, we present an early, but
still widely used attempt to include covalency—namely the Angular Overlap Model
(AOM).

2.2 Angular Overlap Model

2.2.1 General Approach This theory'>~!7 is also well founded in symmetry, rest-

ing on earlier work by McClure,!® and Yamatera'® who, independently, began the
idea of a two-dimensional spectrochemical series by factoring the effects of a ligand
field into - and w-components. The AOM theory recognizes that the d orbitals can
be perturbed in a o, , or -fashion by the ligand orbitals and generates a series of
parameters distinguished by these bonding classifications. The connection between
the magnitudes of these parameters and the actual o- or -bond strengths (free ener-
gies) of the chemical bond remains dubious, but their relative values do seem to agree
with intuitive expectations concerning the ordering of a metal-ligand bond in terms
of the extent of o- or w-bonding. The numbers thus obtained are therefore more eas-
ily linked to chemical information than are the ligand field parameters. These AOM
parameters are still semiempirical and are indeed linked to the ligand field parame-
ters by simple mathematical manipulation. More sophisticated MO methods must be
employed to obtain rigorous information or insight (vide infra).

Consider an M—L, bond fragment lying along the z axis. The AOM theory defines
a o-bonding interaction labeled e, (L) for interaction of the lone pair o-electrons
on the ligand with a do orbital lying along the z axis and e, (L) for interaction of
(equivalent) ligand p, and p, (pm) orbitals lying along the ligand local x and y axes,
such that:

E(Z*) =e,(L); Ex*>—y%) =E(xy)=0; E(xz)=E(yz)=ex(L) (40)
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Technically these definitions are considered relative to the §-interaction being re-
garded as zero. Thus each of the five d orbitals is perturbed by its specific interaction
with ligand o- and w-symmetry orbitals. Based upon the electron density in each
orbital along each coordinate axis, if a o-interaction with the d (z2) 7z axis lobe is de-
fined as 1 x e5 (L), then a o-interaction with the doughnut of charge in the xy plane
of a d(z?) orbital is (1/4)e, (L) and the interaction with each of the four lobes of a
d(x? — y?) is (3/4)e, (L). Then, for example, the specific M—L, fragment, being
M-L along the x axis, yields the contributions:

E@) = (1/8)es(L); E(?—y?) = B/d)es(L);
E(xz) = E(xy) = ex(L); E(yz) =0 1 (41)

To obtain the energies for a species, such as MLg, one simply sums all the pertur-
bations along each axis, to obtain: -

E@Z*) = E(x* — y}) =3e,(L); E(xz) = E(xy) = E(yz) = den(L) (42)

This generates the expected splitting into 72, and e, with an energy ‘separation of
10Dg = 3es(L)—4ex (L). In analogous fashion, if we consider a trans-MLsZ> (Z on
z axis) species and assume that both L and Z possess lone pairs of 7 -symmetry along
their local x, y axis (each M—L, M—Z bond uses the ligand local z axis), then one
can again simply sum the energy contributions from each ligand. This is easily con-
structed when realizing, for example, that the d(xz) orbital interacts with a 7-lone
pair on each of two L ligands and with a r-lone pair on each of two Z ligands, thus:

E@Z%) = es(L) +2¢5(Z); E(x% —y?) =3e,(L);
E(xz) = E(y2) = 2ex(Z) 4+ 2ex(L);  E(xy) = 4ex(L) (43)

2.2.2 More Rigorous Approach  The above analysis is trivial when the ligands
occupy the regular axis positions of an octahedron. For almost all other systems and
especially for low symmetry systems, we should look more closely into the theoreti-
cal basis for this procedure.

Following the Wolfsberg—Helmholz approximation (see Section 2.3), the interac-
tion of a d orbital, initial energy Hys, with a ligand orbital, initial energy H;, and

overlap Sy, yields the final energies E; and E; according to:20

Eq— Hy = (Hy + Hp)? - (Smp)?/(Hy — Hy) = €5 (L)
E; — Hy = —(Hy + Hp)? - (Smr)*/(Hy — Hy) = —e, (L) (44)

Thus the metal orbital is destabilized by a o-antibonding interaction, and the lig-
and orbital is correspondingly stabilized; e, (L) is always positive. The AOM para-
meter is then proportional to the square of the overlap between metal and ligand or-
bital. The overlap contribution may be factored into a radial part which depends upon
the metal, the ligand, and their distance apart; and an angular contribution which is



