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Sepcific heat of the chain of harmonic oscillators
Assume the Hamiltonian of the chain of  coupled harmonic oscillators to be

The specific heat is obtained from the thermal average of the energy  through the relation

Q1 Using the equipartition theorem compute the specific heat of the whole chain .

We have seen in the lecture that, after having performed a Fourier transformation

the Hamiltonian takes the following form in the reciprocal space:

Applying the equipartition theorem to each independent d.o.f. yields

so that the thermal average of the energy reads

from which the famous Dulong–Petit law follows: .

Sepcific heat of the 1D Ising model
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In the absence of external filed ( ), the Hamiltonian of the 1D Ising model reads

The computation of the partition function  encompasses a sum over  values of the spin variables

This calculation is facilitated defining the transfer matrix

with , which allows rewriting

where periodic boundary conditions have been assumed. Since the trace of a matrix is independent of the
basis on which the matrix is expressed, it is convenient to express  on its eigenstates so that  becomes

with  being the two eigenvalues of . In the thermodynamic limit  only the contribution of the
largest eigenvalue survives

1. Using the fact that the thermal average of the energy is

compute the eigenvalues of the transfer matrix and use the largest one to compute .

The eigenvalues of the transfer matrix  are the solution of the characteristic polynomial

namely

Hence we find the expression of the partition function

From above we know that
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2. Using Eq.(1) compute the specific heat of the whole chain .
After deriving , we can simply calculate the specific heat of the entire chain by

Comparison between different models
The following script plots the magnetic contribution to the specific heat computed for 1D (infinite chain)
classical Heisenberg model with uniaxial anisotropy in . In the vertical axis the specific heat per spin is
reported in units of ; in the horizontal axis the temperature in units of the exchange coupling . For
comparison the analytic results obtained for the isotropic Heisenberg model (with ) and for the Ising
model are also plotted with solid lines.

1. Explain with your own words why at low  the specific heat tends to the constant value equal to 
for all the three curves involving classical Heisenberg spins (symbols and black solid line).
Hint: establish an analogy between the linear excitations in the 1D Heisenberg model and the chain of
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harmonic oscillators discussed in the first exercise.
The classical Heisenberg model behaves at low-T as a system of coupled harmonic oscillators and,
therefore, the Dulong–Petit law applies. For the 1D case, the linearized Hamiltonian has two independent
d.o.f. in the Fourier space, which provide a constant contribution to the specific heat per spin equal to

.

2. Why does the specific heat of the Ising model approach zero when  tends to zero?
Because the elementary excitations of the Ising model are not spin waves but domain walls (DWs) with a
finite energy gap w.r.t. to the ground state (each spin variable can only take quantized values ). For
this reason, the specific heat per spin vanishes as  and it displays a Schottky anomaly at
intermediate temperatures.
Disambiguation: Note that when  the spin-waves dispersion relation  is also gaped.
However, as we are dealing with classical spins, the Fourier amplitude of a certain mode varies
continuously and can be made indefinitely small. As a consequence, the Dulong–Petit law applies till

. The situation is different when spin-waves are treated quantum-mechanically.

3. Do you expect the classical Heisenberg model to reproduce the specific heat observed in realistic
samples at low temperature?
No, because the energy spectrum of real systems is quantized at low-T, and the specific heat should
vanish accordingly (think, e.g., of the Einstein or the Debey models of heat capacity).

4. Provide an argument to explain why the curve for  approaches the behavior of the isotrpic
Heisenberg model at the highest computed temperatures.
The anisotropy is not relevant for  or better when  is significantly larger than the DW
energy (equal to  in this case).

5. Provide an argument to explain why the curve for  approaches the behavior of the Ising model
at the highest computed temperatures.
Hint: wait for the lecture on domain walls if you have no idea.
In this limit, domain walls are sharp and their energy is , namely the same as for the Ising model.

kB

T

±1
T → 0

D ≠ 0 ω(q)

T → O+

D/J = 0.1

T ≫ DkB TkB
2 2DJ‾ ‾‾‾√

D/J = 2

2J

Specific heat of classical-spin chains https://www.vindigni.ch/rstudio/files/magnetismcourse/HS2022/Assign...

4 of 4 12/11/22, 6:57 PM


