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Low-temperature correlations in the XY model
The Hamiltonian of the classical XY model with  can be expressed in terms of the angle  formed by each spin with some
defined lattice direction:

For small variations of the  angle between neighboring sites, this Hamiltonian can be rewritten in the continuum-limit
formalism

The Hamiltonian (1) can be decoupled passing to the Fourier space

in such a way that the equipartition theorem can be applied.

Q1 Evaluate the thermal averages of the Fourier amplitudes }:

Within the linear (elastic) approximation and the continuum formalism, the following equations hold for spatial correlations

with
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Q2 Using the expression of the thermal averages  determined above and the Fourier transformations

compute the spatial correlations given in Eq. (2) for the one-dimensional (1D) and two-dimensional (2D) case.

with .

Q3 Assuming the expression

as definition of the correlation length , determine the dependence of  on temperature in both the 1D and the 2D case.

A characteristic length scale of the spatial decay of pair-spin correlations, i.e. the correlation length, can be defined only for the 1D
case and it is

Note that this dependence is equal to the low-T expansion of the exact result.
For the 2D case, pair-spin correlations decay as a power law, namely it is scale free and a correlation length cannot be defined. As
discussed during the correction in the class, this behavior represents the maximal degree of order that can be attained in the 2D
classical XY model at low temperature. As the temperature exceeds a certain threshold, the decay of pair-spin correlations
becomes exponential as in Eq.(3). In this high-T phase, the correlation length can then be defined and shows a very peculiar
dependence on :

This correlation length diverges when the temperature  is approached from above. The temperature  marks the transition
from a power-law to an exponential decay of pair-spin correlations and is named after Kosterlitz and Thouless. Qualitatively, one can
understand this change of regime as induced by the proliferation of vortices (or better the unbinding of vortex pairs). The next
exercise focusses on a simple estimate of this temperature.

Vortices in the 2D XY model
Besides the linear excitations described above, the Hamiltonian (1) is also compatible with vortex excitations. Vortices are
topological excitations to some extent equivalent to domain walls in the 1D Ising model. In the two-dimensional case (D=2), it is
convenient to parameterize the position of a certain spin on the XY plane through polar coordinates . Then, the  field is a
function of this pair of coordinates, i.e., .

In this description a vortex is represented, e.g., by a dependence of  which yields the vector field
.

Q1 Provide an estimate of the vortex energy  using this information, the Hamiltonian (1) and remembering that
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For your convenience, set the extremes of integration  and  (  lattice unit).

The Hamiltonian in equation (1) yields

Q2 estimate of the entropy increase  due to the creation of one vortex in an otherwise uniform ground state (with
cst). This can be obtained by counting (roughly!) the number of lattice sites which can host the center of the vortex

(vortex core).

For a system with  sites, a vortex core can be placed in  sites. Hence,

where  is the number of configurations.

Q3 Combining  and  evaluate the free-energy variation associated with the creation of one vortex and draw your
conclusions:

A rough estimate of the free-energy variation  associated with the creation of a vortex at finite temperature  is given by

Q4 Is there a characteristic temperature  above which the formation of one vortex is favored?

To evaluate the Kosterlitz-Thouless temperature, we require that the free-energy variation estimated above be zero at :

Fit beta to data measured on Fe/W(111) films
In the vicinity of  the spontaneous magnetization is expected to behave as

with . The script below loads data of the magnetization (in arbitrary units) versus  directly from the file
“Data/beta_exponent.csv”

Q1 The mean-field prediction for the critical exponent defined above is . Fit the data by properly choosing the constant 
and fixing  to the values: 1/2, 1/4 and 1/8.

To determine the parameters  and  you can change their values in the Rmd file and knit  the document again.
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Q2 Provide arguments that support your choice of  using the information that the data were collected on a film of Fe
deposited on W(111) substrate, namely a 2D array of magnetic moments coupled ferromagnetically.

In the plot above we chose the parameters  and . The later corresponds to the critical exponent of the 2D Ising
model. The fact that the sample is a film is compatible with the dimensionality of the magnetic lattice (2D). The sample behaves as
the Ising model (and not like the XY or Heisenberg model that would not sustain ferromagnetism at finite ) because an in-plane
uniaxial anisotropy is present. We have not seen it in the course, but if the uniaxial anisotropy was out-of-plane, the dipolar
interaction would have induced the formation of magnetic domains, leading to a vanishing global magnetization.

Q3 Explain with your own words why the prediction of the mean-field model is not accurate.

The mean-field model provides the correct critical exponents only for lattice dimensionality D  4; as the dimensionality of the
magnetic lattice is reduced, the mean-field approximation becomes worse and worse.
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