Landau orbits and their magnetic response

Alessandro Vindigni

14/11/2022

Landau orbits

We consider the Hamiltonian of a charged particle in a constant magnetic field:

$$\mathcal{H} = \frac{1}{2m} \left(\hat{\mathbf{p}} - q_{\rm e} \vec{A} \right)^2$$

or more explicitly

$$\mathcal{H} = \frac{1}{2m} \left(\hat{p}^{x} + q_{e} B \hat{y} \right)^{2} + \frac{1}{2m} \left(\hat{p}^{y} - q_{e} B \hat{x} \right)^{2} + \frac{1}{2m} (\hat{p}^{z})^{2} .$$

with $\hat{p}^{\alpha} = -i\hbar\partial_{\alpha}$ being the linear momentum operator (quantum description). The \hat{p}^{z} operator commutes with the Hamiltonian, therefore the wave function has the same dependence on z as the wave function of a free particle, and the same eigenvalues. The in-plane components can be rearranged to obtain the Hamiltonian of a harmonic oscillator, as it was first noted by Landau (1930). The resulting *Landau energy levels* read

$$E_n = \hbar \omega_c \left(n + \frac{1}{2} \right) + \frac{\hbar^2 k_z^2}{2m} \,,$$

where n = 0, 1, 2... is an integer and $\omega_c = q_e B/m$ the cyclotron frequency. For fixed *n* and k_z , neglecting the spin coordinate, the level degeneracy is

$$N_{\rm d} = L^2 q_{\rm e} B / (2\pi\hbar)$$

where *L* is the linear dimension of the system (see Ashcroft and Mermin *Solid-state Physics*). We restrict ourselves to the case in which k_z is constant or, to make things simpler, to the 2D case setting $k_z = 0$.

Complete the passages to derive the partition function

$$\mathcal{Z} = N_{\rm d} \sum_{n} e^{-\beta E_n}$$
$$= \dots$$
$$= \dots$$
$$= N_{\rm d} \frac{1}{2} \frac{1}{\sinh(\beta \hbar \omega_c/2)}$$

Answer

$$\mathcal{Z} = N_{\rm d} \sum_{n} e^{-\beta E_{n}}$$

$$= N_{\rm d} e^{-\beta \hbar \omega_{c}/2} \sum_{n} e^{-n\beta \hbar \omega_{c}}$$

$$= N_{\rm d} \frac{e^{-\beta \hbar \omega_{c}/2}}{1 - e^{-\beta \hbar \omega_{c}}}$$

$$= N_{\rm d} \frac{1}{2} \frac{1}{\sinh(\beta \hbar \omega_{c}/2)}$$

2. Using the partition function computed above, the average magnetic moment along z (direction along which the field is applied), can be computed

$$\langle \mu^{z} \rangle = k_{\rm B} T \frac{1}{\mathcal{Z}} \frac{\partial \mathcal{Z}}{\partial B^{z}}$$

= $k_{\rm B} T \left[\frac{1}{B} - \frac{\beta q_{\rm e} \hbar}{2m} \coth(\beta \hbar \omega_{c}/2) \right]$

(remember that N_d depends linearly on *B*!). By expanding the hyperbolic cotangent $\operatorname{coth}(x) = x^{-1} + x/3 + \mathcal{O}(x^5)$, compute the average magnetic moment $\langle \mu^z \rangle$ for small fields

For $\hbar \omega_c / (k_{\rm B} T) \ll 1$ one has

$$\langle \mu^{z} \rangle = k_{\rm B} T \left[\frac{1}{B} - \frac{\beta q_{\rm e} \hbar}{2m} \left(\frac{2}{\beta \hbar \omega_{c}} + \frac{1}{3} \frac{\beta \hbar \omega_{c}}{2} + \dots \right) \right] = -\frac{1}{12} \left(\frac{q_{\rm e} \hbar}{m} \right)^{2} \frac{B}{k_{\rm B} T} \,.$$

where the fact that $\omega_c = q_e B/m$ and $\beta = 1/(k_B T)$ was used.

3. What happens when $\hbar\omega_c/(k_{\rm B}T)$ goes to zero?

The classical result is recovered, namely a vanishing magnetic moment, in line with the Bohr–van Leeuwen theorem. This classical limit corresponds to the separation between energy levels becoming smaller than the thermal energy $k_{\rm B}T$.

Quiz Landau orbits vs single-electron atomic ordbitals

The average magnetic resulting from the quantization of the orbits of an electron that moves in a constant \dot{B} field (Landau orbits) reads

$$\langle \mu^z \rangle = k_{\rm B} T \left[\frac{1}{B} - \frac{\beta q_{\rm e} \hbar}{2m} \coth(\beta \hbar \omega_c/2) \right]$$

and, as we have seen, it is negative (*diamagnetic*). The average magnetic moment of an *unpaired* electron occupying a single-electron atomic orbital (n, l, m) with $l \neq 0$ is instead positive (*paramagnetic*). This can be demonstrated computing its thermal average by means of the Zeeman single-electron Hamiltonian

$$\mathcal{H}_{\mathrm{Z},i} = \mu_{\mathrm{B}} \,\hat{\mathbf{l}}_i \cdot \vec{B} \,.$$

Indicate in the correct answer to the following questions with a X at the beginning of the corresponding line.

Question: Which main difference between the two sets of single-electron states is responsible for the opposite sign of $\langle \mu^z \rangle$ obtained in the two calculations?

- Landau orbits are eigenstates of a harmonic-oscillator Hamiltonian, while the (n, l, m) levels are eigenstates of a hydrogen-like Hamiltonian.
- In a semiclassical picture, Landau levels behave according to the Faraday-Neumann-Lenz law, while atomic (μ^z) are the q.m. equivalent of Ampère's rigid, elementary current loops.
- The origin of Landau orbits is the \vec{B} field itself, while the (n, l, m) levels are eigenstates of the central-potential Hamiltonian $\mathcal{H}_{0,i}$ and can hardly be affected by the Zeeman interaction.
- Both calculations produce $\langle \mu^z \rangle > 0$ for large enough *B* fields.