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Array of spins 1/2 coupled via Heisenberg
exchange interaction
We consider the Hamiltonian

for , with both open and periodic boundary conditions. We will express eigenvalues in units of the
exchange coupling  (assumed to be positive). In the next tables you will find some sets of irreducible
representations (IRs) of the SO(3) rotation group, associated with the possible values of total spin and built
coupling progressively intermediate angular momenta, namely pairing angular momenta as ,

 and so on. Different tables correspond to increasing number of spins in the array ( ). The
dimensionality of each IR is given in the column dim.

Assign the eigenvalues shown below each table to the corresponding IRs and copy them in the proper cell of
each table. There are cases in which you can derive an analytic expression for the eigenvalues and thus
establish a one-to-one correspondence between the IRs and the eigenstates of the Hamiltonian computed
numerically. In other cases this will not be easily feasible. Follow the suggestions case by case in order that
you do not engage in lengthy calculations (but alternative approaches are welcome and encouraged).

After having completed the assignment (even partially!), try to express with your own words the relationship
between IRs of the total spin of the system and the degeneracy of eigenvalues of the spin Hamiltonian (1). If
needed, we encourage you to look for external sources to reflect on this relationship (e.g., see the book
chapter “CourseLibrary/BookChapters/White_Ch2.pdf” at p. 46 and following).

N = 3 spins 1/2
Open boundary conditions
The spin Hamiltonian is in this case

Hint: To determine the eigenvalues analytically, rewrite the scalar product above using the well-known relation

and express it in terms of the square of the total spin  and the square of the intermediate spin .
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Answer

dim eigenvalue [ ]

0 1/2 2 0

1 1/2 2 1

1 3/2 4 -1/2

number_spins=3
python3 ../05-week/array_spin_eigenvalues.py $number_spins True

##  eigenvalue   degeneracy
##  -0.50000     4
##  0.00000      2
##  1.00000      2
## 
##  Hilbert space dim =      8

Periodic boundary conditions
The spin Hamiltonian is in this case

Hint: With respect to the previous case, just the coupling between the first and the third spin has been added;
this operator can be expressed on the same basis  by means of the relation

which brings an additional term to the eigenvalues computed before.

Answer
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dim eigenvalue [ ]

0 1/2 2 3/4

1 1/2 2 3/4

1 3/2 4 -3/4

number_spins=3
python3 ../05-week/array_spin_eigenvalues.py $number_spins

##  eigenvalue   degeneracy
##  -0.75000     4
##  0.75000      4
## 
##  Hilbert space dim =      8

N = 4 spins 1/2
Periodic boundary conditions
The spin Hamiltonian is in this case

Compute its eigenvalues on the basis  and copy the values in the table below.

Hint: To determine the eigenvalues analytically, consider the operator

Answer

dim eigenvalue [ ]

0 0 0 1 0

1 0 1 3 0

0 1 1 3 0

1 1 0 1 2

1 1 1 3 1

1 1 2 5 -1
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number_spins=4
python3 ../05-week/array_spin_eigenvalues.py $number_spins

##  eigenvalue   degeneracy
##  -1.00000     5
##  -0.00000     7
##  1.00000      3
##  2.00000      1
## 
##  Hilbert space dim =      16

Question What would be the ground state for ? Which physical state does that IR represents?

Answer

It represents the Néel state in which the spins of sublattices at even sites take their maximal value; the
intermediate spins  and  obtained coupling spins with sitting at odd and even sites are paired
antiferromagnetically.

Open boundary conditions
With respect to the previous case, the interaction between the first and the last spin is removed and the
Hamiltonian reads

One possibility to determine the eigenvalues analytically is to diagonalize simulataneously  for periodic
boundary condition and the operator

then subtract the contribution of the latter from the eigenvalues obtained for the array with periodic boundary
conditions. This is not an easy task in general because there are several intermediate coupling schemes

that obviously produce the same set of values for the total spin . In particular, the operator  would
be diagonal on the basis set  but it is not diagonal on the basis

.
However, that operator is diagonal on the multiplet with maximal spin . Thanks to the properties of
IRs, it suffices to compute the matrix element

on one state of the multiplet with , to deduce the 5-fold degenerate eigenvalue of the Hamiltonian
(2). Compute this eigenvalue analytically and write it down in the proper cell of the underlying table.
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Hint: Use the fact that

Answer

The contribution to add to the energy obtained for periodic boundary conditions is

which yields

dim eigenvalue [ ]

0 0 0 1 ?

1 0 1 3 ?

0 1 1 3 ?

1 1 0 1 ?

1 1 1 3 ?

1 1 2 5 -3/4

number_spins=4
python3 ../05-week/array_spin_eigenvalues.py $number_spins True

##  eigenvalue   degeneracy
##  -0.75000     5
##  -0.45711     3
##  -0.11603     1
##  0.25000      3
##  0.95711      3
##  1.61603      1
## 
##  Hilbert space dim =      16

N = 5 spins 1/2
Open boundary conditions
The spin Hamiltonian is in this case
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Using the same trick as in Eq. (3), determine the eigenvalues associated with the multiplet  and
transfer the computed value in the relative cell of the table below.

Answer

One can proceed as in the last part of the previous exercise

dim eigenvalue [ ]

0 0 0 1/2 2 ?

1 0 1 1/2 2 ?

1 0 1 3/2 4 ?

0 1 1 1/2 2 ?

0 1 1 3/2 4 ?

1 1 0 1/2 2 ?

1 1 1 1/2 2 ?

1 1 1 3/2 4 ?

1 1 2 3/2 4 ?

1 1 2 5/2 6 -1

number_spins=5
python3 ../05-week/array_spin_eigenvalues.py $number_spins True

##  eigenvalue   degeneracy
##  -1.00000     6
##  -0.80902     4
##  -0.58870     2
##  -0.30902     4
##  -0.20711     2
##  0.30902      4
##  0.66082      2
##  0.80902      4
##  1.20711      2
##  1.92789      2
## 
##  Hilbert space dim =      32

Symmetry and eigenvalue degeneracy
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How does the degeneracy of the eigenvalues computed numerically in the previous sections relates to the
dimensionality of the IRs reported in all the tables?

Answer

The degeneracy of computed eigenvalues is at least equal to the dimensionality of the IRs of SO(3).

Provide an argument to justify why eigenvalues computed assuming periodic boundary conditions show
generally a higher degree of degeneracy.

Answer

The system is more symmetric when periodic boundary conditions are assumed. In fact, also translational
symmetry of lattice indeces holds in this case, besides the rotational symmetry in the spin space. Generally, a
more symmetric system has a more degenerate eigenvalues spectrum. A clear example is the case of d levels
(5-fold degenerate) for the free ion that split into the  (3-fold degenerate) and  (2-fold degenerate)
multiplet when the symmetry of the environment is lowered from SO(3) to .

Hint It is instructive to read the paragraph Symmetry Representations of the book chapter White_Ch2 (/rstudio
/files/magnetismcourse/HS2021/CourseLibrary/BookChapters/White_Ch2.pdf) at p. 46 and following.

t2g eg
Oh
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