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Orbital wave function of two p electrons
The electronic configuration of carbon is He (2s) (2p) , meaning that both electrons in the outer shell have
quantum numbers  and . Let  be the orbital angular momenta of those electrons and

 the total angular momentum.

• Verify that the dimension of the Hilbert space obtained by the direct sum of all the multiplets 
is equal to .

(see attached latex file)

• Assuming that the spin part of the wave function of the (2p)  electrons is the triplet state 
(consistently with the first Hund’s rule), explain with your own words why the total angular momentum
cannot be a state of the  multiplet (hint: look at a Clebsch-Gordan coefficients table on-line or in
the file CourseLibrary/Images/Clebsch-Gordan_coeff.pdf).

(see attached latex file)

• With the help of a Clebsch-Gordan coefficients table, show that the multiplet  is, instead,
compatible with the two (2p)  electrons being in a spin triplet state .

(see attached latex file)

• Determine the eigenvalues of the operator  and their degeneracy, using the relation
.

(see attached latex file)

Energy splittig in distorted octahedral
environment
Verify (on your own) that the eigenvalues of the matrix in the table CourseLibrary/Images/Table1-2.pdf are

Following Lever and Solomon (see CourseLibrary/BookChapters/Lever-Solomon_CF.pdf), we will assume that
the crystal-field strengths ( , , ) can be parameterized as follows
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where  indicates the distance of the ligand point charges lying on the  plane from the nucleus of the
transition metal and  indicates the distance of the ligand point charges lying on the  axis from the same
nucleus (see lecture notes). The underlying script plots the four different eigenvalues written above as a
function of the ratio , assuming  eV and  eV:

• Try to explain the features observed in the plot based on the spatial orientation of the real d orbitals
given below and on electrostatic considerations.
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The lobes of the orbitals  (  multiplet),  and  (  multiplet) have a sizable component pointing along
the  axis; therefore, when charges lying on this axis are pulled away from the transition metal ( ,
elongation), the energy of those orbitals is reduced w.r.t. to that of other orbitals in the same multiplet. The
opposite trend is observed when the octahedron of ligands is compressed ( ).

• What happens when ?

When  the perfect octahedral symmetry is realized associated with the group . In all the other region
of the diagram the underlying symmetry is  (compressed or elongated octahedron).

• Referring to the qualitative plot of the energy splitting as a function of  shown in the plot, which limit
corresponds to a planar complex of TMPc (Transition-Metal Phthalocyanine) sketched above?

Nominally, it should correspond to  which gives the crystal field splitting produced by 4 negative point
charges placed at the vertices of a square lying on the  plane. In practice, this does not reproduce the
observed splitting because reducing the effect of the 4 Nitrogen atoms (red dots) surrounding the transition
metal (blue dot) to the coulomb repulsion of 4 point charges is an oversimplification. In fact, 3d orbitals also
participate in the chemical bonding, which must lower the energy w.r.t. to the case of isolated atoms
(otherwise the molecule would not be stable). This effect compensates for the ‘’energy penalization’’ that one
would naively infer from the crystal-field description.
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Assignment 3

1. Orbital wave function of two p electrons

� The dimensionality of each multiplet of L is 2L + 1; the direct sum of those subspaces
yelds 1 + 3 + 5 for L = 0, 1, 2 respectively.

� We know that the radial part of the spatial wave function is the same for both electrons
R2,1(ri) with i = 1, 2. As for the angular part, the state |L = 2,M = +2〉 = |m1 =
+1,m2 = +1〉, or in the of spherical harmonics representation Y1,+1(θ1, φ1)Y1,+1(θ2, φ2),
is symmetric w.r.t. the exchange of the two electrons. With the help of a Clebsch-
Gordan coefficients table one can verify that the other 4 states in the L = 2 multiplet are
symmetric w.r.t. the exchange of the two electrons as well. Knowing that the spin part
of the wave fucntion is the spin triplet χT (symmetric w.r.t. the exchange 1 ↔ 2), the
angular part of the wave fucntion cannot be a state of the multiplet L = 2.

� For L = 1 multiplet, instead, using a Clebsch-Gordan coefficients table one can verify
that

|L = 1,M = +1〉 =
1√
2

[Y1,+1(θ1, φ1)Y1,0(θ2, φ2)− Y1,0(θ1, φ1)Y1,+1(θ2, φ2)]

|L = 1,M = 0〉 =
1√
2

[Y1,+1(θ1, φ1)Y1,−1(θ2, φ2)− Y1,−1(θ1, φ1)Y1,+1(θ2, φ2)]

|L = 1,M = −1〉 =
1√
2

[Y1,−1(θ1, φ1)Y1,0(θ2, φ2)− Y1,0(θ1, φ1)Y1,−1(θ2, φ2)]

The spatial wave functions above are manifestly antisymmetric w.r.t. the exchange 1↔ 2
and, thereore, compatible with a symmetric spin wave function χT.

� Generally, the relation (L̂)2 = (̂l1 + l̂2)
2 = (̂l1)

2 + 2 l̂1 · l̂2 + (̂l2)
2 implies

l̂1 · l̂2 =
(L̂)2 − (̂l1)

2 − (̂l2)
2

2

from which it follows that

〈L,M |̂l1 · l̂2|L,M〉 =
1

2
[L(L+ 1)− l1(l1 + 1)− l2(l2 + 1)] =

1

2
L(L+ 1)− 2

when l1 = l2 = 1. Thus, the scalar product l̂1 ·̂l2 takes three different eigenvalues associated
with the three possible values of the modulus L = 0, 1, 2 with the relative degeneracy
deg = 1, 3, 5. As remarked at the first point of this assignment, the dimension of the
Hilbert space is preserved passing from the basis |l1,m1〉 ⊗ |l2,m2〉 (3 × 3 basis kets) to
|L,M〉 (1 + 3 + 5 basis kets).

1


