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Solution 1

1. Derivation of the elementary magnetic moment in the Ampère description

~r

~v

~µ

m, qe

The electric current i is generally defined as the rate at which charge flows through a given
cross-section of a wire, i.e. i = dQ

dt
. In our system the only charge flowing is qe, meaning that

the amount of charge qe crosses any surface element perpendicular to the trajectory within the
time T . Therefore the current can be written as:

i =
qe
T
. (1)

The period T can be represented as the circumference of the loop divided by the modulus of
the tangential velocity v:

T =
2πr

v
. (2)

Inserting Eq. (2) in Eq. (1) and expressing the area of the loop ∆Σ in terms of its radius
∆Σ = πr2, the magnetic moment can be expressed as following:

~µ =
qev

2πr
πr2 n̂ =

qe
2
v r n̂ . (3)

Notice that for a planar motion v r n̂ is the same as ~r × ~v = ~l/m, with ~l being the angular
momentum of the particle. In conclusion, the magnetic moment ~µ of a particle with charge qe
is related to its angular momentum as following:

~µ = qe~l/(2m). (4)
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2. Scalar product of two spins 1/2

The generic element Aαβ of the matrix representation A of the operator ŝ1 · ŝ2 is given by the
“sandwich” of the operator between the bra and the ket of two generic states 〈α| and |β〉, i.e.

Aαβ = 〈α|ŝ1 · ŝ2|β〉 , (5)

where both 〈α| and |β〉 are expressed on the basis |m1,m2〉.
In order to compute such a “sandwich” between two generic states, we need to know how the
operator ŝ1 · ŝ2 acts on the states of our basis |m1,m2〉. Let us write this product in terms of
the Pauli matrices:

ŝ1 · ŝ2 =
1

4
σ̂1 · σ̂2 =

1

4
(σ̂x1 σ̂

x
2 + σ̂y1 σ̂

y
2 + σ̂z1σ̂

z
2) (6)

where the three terms in parenthesis act to the states of our basis as following:

σ̂x1 σ̂
x
2 |+ +〉 = | − −〉 σ̂y1 σ̂

y
2 |+ +〉 = +i2| − −〉 σ̂z1σ̂

z
2|+ +〉 = +|+ +〉

σ̂x1 σ̂
x
2 | −+〉 = |+−〉 σ̂y1 σ̂

y
2 | −+〉 = −i2|+−〉 σ̂z1σ̂

z
2| −+〉 = −| −+〉

σ̂x1 σ̂
x
2 |+−〉 = | −+〉 σ̂y1 σ̂

y
2 |+−〉 = −i2| −+〉 σ̂z1σ̂

z
2|+−〉 = −|+−〉

σ̂x1 σ̂
x
2 | − −〉 = |+ +〉 σ̂y1 σ̂

y
2 | − −〉 = +i2|+ +〉 σ̂z1σ̂

z
2| − −〉 = +| − −〉

Let us consider the first column. The sandwiches we need to compute are the following:

〈+ + |ŝ1 · ŝ2|+ +〉 , 〈−+ |ŝ1 · ŝ2|+ +〉 , 〈+− |ŝ1 · ŝ2|+ +〉 , 〈− − |ŝ1 · ŝ2|+ +〉 . (7)

The first element is easily computed without even using the table given for the action of the
Pauli matrices. Given:

〈+ + |ŝ1 · ŝ2|+ +〉 = 〈+ + |1
4

(σ̂x1 σ̂
x
2 + σ̂y1 σ̂

y
2 + σ̂z1σ̂

z
2) |+ +〉 , (8)

the only non zero contribution comes from the z components 〈+ + |σ̂z1σ̂z2|+ +〉 = 1.
〈+ + |σ̂y1 σ̂

y
2 |+ +〉 and 〈+ + |σ̂x1 σ̂x2 |+ +〉 are zero because the action of σ̂y1 σ̂

y
2 and σ̂x1 σ̂

x
2 maps the

|+ +〉 state into | − −〉 (which is orthogonal to |+ +〉 itself).

The second and third elements in Eq. (7) do not have any contribution from the z com-
ponents since σ̂z1σ̂

z
2 do not change its eigenstate |+ +〉. As told before σ̂y1 σ̂

y
2 and σ̂x1 σ̂

x
2 map the

| + +〉 state into | − −〉, which is orthogonal to both | − +〉 and | + −〉. Therefore even these
contributions are zeros, and the second and third element of the matrix result to be null.

The fourth in Eq. (7) element has no z contribution as already seen with similar arguments for
the second and third, but the contributions 〈− − |σ̂y1 σ̂

y
2 | + +〉 and 〈− − |σ̂x1 σ̂x2 | + +〉 are both

non-zero. Let us have a look to the matrix at this point, before completing the calculations.

ŝ1 · ŝ2 |+ +〉 | −+〉 |+−〉 | − −〉
〈+ + | 1/4 . . . . . . . . .
〈−+ | 0 . . . . . . . . .
〈+− | 0 . . . . . . . . .
〈− − | ? . . . . . . . . .
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Now using the same arguments for the first element of the first column, the elements of the
matrix which only have a non zero contribution from the z components are the ones in diagonal.
Calculating them we have:

ŝ1 · ŝ2 |+ +〉 | −+〉 |+−〉 | − −〉
〈+ + | 1/4 . . . . . . . . .
〈−+ | 0 −1/4 . . . . . .
〈+− | 0 . . . −1/4 . . .
〈− − | ? . . . . . . 1/4

Using the same arguments for the second and third elements of the first columns:

ŝ1 · ŝ2 |+ +〉 | −+〉 |+−〉 | − −〉
〈+ + | 1/4 0 0 . . .
〈−+ | 0 −1/4 . . . 0
〈+− | 0 . . . −1/4 0
〈− − | ? 0 0 1/4

Using the same arguments for the forth element of the first columns:

ŝ1 · ŝ2 |+ +〉 | −+〉 |+−〉 | − −〉
〈+ + | 1/4 0 0 ?
〈−+ | 0 −1/4 ? 0
〈+− | 0 ? −1/4 0
〈− − | ? 0 0 1/4

The ? means that the sum of the contributions coming from x and y components needs to
be evaluated explicitly. The detailed calculation shows that these contributions are equal and
with the same sign for the elements in the center of the matrix and have opposite sign for the
elements in the corner resulting in:

ŝ1 · ŝ2 |+ +〉 | −+〉 |+−〉 | − −〉
〈+ + | 1/4 0 0 0
〈−+ | 0 −1/4 1/2 0
〈+− | 0 1/2 −1/4 0
〈− − | 0 0 0 1/4

We now change the basis from |m1,m2〉 to |S,M〉 states and we calculate the elements of the
same matrix ŝ1 ·ŝ2 in the new basis. Using the fact that (Ŝ)2 = (ŝ1+ŝ2)

2 = (ŝ1)
2+2 ŝ1 ·ŝ2+(ŝ2)

2,
i.e:

ŝ1 · ŝ2 =
(Ŝ)2 − (ŝ1)

2 − (ŝ2)
2

2
(9)

and knowing that:

Ŝ2|S,M〉 = S(S + 1)|S,M〉
ŝ21|S,M〉 = s1(s1 + 1)|S,M〉
ŝ22|S,M〉 = s2(s2 + 1)|S,M〉 ,

(10)

where s1 = s2 = 1/2, the matrix results diagonal on the basis |S,M〉, whose states are thus
eigenstates of the operator ŝ1 · ŝ2:
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ŝ1 · ŝ2 |1,+1〉 |1, 0〉 |1,−1〉 |0, 0〉
〈1,+1| 1/4 0 0 0
〈1, 0| 0 1/4 0 0
〈1,−1| 0 0 1/4 0
〈0, 0| 0 0 0 −3/4

3. Covariance of the spacetime interval

Given the Lorentz boost along the x direction{
x′ = coshαx− sinhα (ct)

ct′ = coshα (ct)− sinhαx ,

the difference the two spacetime points (ct1, x1, 0, 0) and (ct2, x2, 0, 0) is{
x′2 − x′1 = coshα (x2 − x1)− sinhα c(t2 − t1)
c(t′2 − t′1) = coshα (t2 − t1)− sinhα (x2 − x1)

Thus, taking the square on both sides of the two equations yields{
(x′2 − x′1)2 = [coshα (x2x1)− sinhα c(t2 − t1)]2

c2(t′2 − t′1)2 = [coshα (t2 − t1)− sinhα (x2x1)]
2

so that the equivalence between the squared spacetime intervals can easily be obtained

c2(t′2 − t′1)2 − (x′2 − x′1)2 = [coshα c(t2 − t1)− sinhα (x2 − x1)]2 − [coshα (x2 − x1)− sinhα c(t2 − t1)]2

= cosh2 α
[
c2(t2 − t1)2 − (x2 − x1)2

]
− sinh2 α

[
c2(t2 − t1)2 − (x2 − x1)2

]
− 2 coshα sinhα [c(t2 − t1)(x2 − x1)− c(t2 − t1)(x2 − x1)]
= (cosh2 α− sinh2 α)

[
c2(t2 − t1)2 − (x2 − x1)2

]
= c2(t2 − t1)2 − (x2 − x1)2

where the equivalence cosh2 α− sinh2 α = 1 was used.
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